中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (10): 2095-2102 Previous Articles   Next Articles

• Review •

Supramolecular Fuzzy Recognition

Wan Decheng*, Jin Ming, Pu Hongting   

  1. Institute of Functional Polymers, School of Materials Science and Technology, Tongji University, Shanghai 200092, China
  • Received: Revised: Online: Published:
PDF ( 885 ) Cited
Export

EndNote

Ris

BibTeX

In supramolecular host-guest systems, recognition promoted by specific interaction such as multiple H-bond, topological trapping, metal-ligand interaction is generally highly selective. But the host should be rigorously tailored in size, morphology and electronic environment so that completely complementary interaction is possible, meanwhile, mainly those guests with topological or electronic feature can be well recognized. Such a mechanism is called static molecular recognition (SMR). On the other hand, core-shell amphiphilic macromolecule (CAM) derived from hyperbranched polymer is readily available but shows wide guest affinities. Recent research, however, shows that appropriate core engineering of a CAM can lead to highly selective guest encapsulation because the difference of the guest species can be amplified, while CAM is featured by the dense and randomly distributed functional groups in the core, which render it readily tailorable. Such a recognition mechanism which is based on the nonlinearity of a complex system does not need to be promoted by a specific interaction,and is applicable to the recognition of complex molecules, thus is called supramolecular fuzzy recognition. Experiments have shown that a variety of ionic guest species can be effectively separated, including those which are topologically and electronically similar species. In this article, the mechanism, feature and application of supramolecular fuzzy recognition are reviewed.

Contents
1 Introduction
2 Highly specific molecular recognition promoted by specific interaction
3 Supramolecular fuzzy recognition
4 Conclusions and outlook

CLC Number: 

[1] Zadeh L A. IEEE Trans. Systems Man Cybernetics, 1973, 3: 28-44
[2] Shinkai S, Ikeda M, Sugasaki A, Takeuchi M. Acc. Chem. Res., 2001, 34: 494-503
[3] Buhleier E, Wehner W, Vogtle F. Synthesis, 1978, 2: 155-158
[4] Maciejewski M. J. Macromol. Sci. Chem., 1982, 17A: 689-702
[5] Jansen J F G A, Meijer E W. J. Am. Chem. Soc., 1995, 117: 4417-4418
[6] Tomoyose Y T, Jiang D L, Jin R H, Aida T, Yamashita T, Horie K, Yashima E, Okamoto Y. Macromolecules, 1996, 29: 5236-5238
[7] Baars M W P L, Froehling P E, Meijer E W. Chem. Commun., 1997, 1959-1960
[8] Balzani V, Ceroni P, Gestermann S, Gorka M, Kauffmann C, Vogtle F. Tetrahedron, 2002, 58: 629-637
[9] Jorgenson W L, Pranata J. J. Am. Chem. Soc., 1990, 112: 2008-2010
[10] Pranata J, Wierschke S G, Jorgenson W L. J. Am. Chem. Soc., 1991, 113: 2810-2819
[11] Li Z, Ding J, Robertson G, Day M, Tao Y. Tetrahedron Lett., 2005, 46: 6499-6502
[12] Fan E, van Arman S A, Kincaid S, Hamilton A D. J. Am. Chem. Soc., 1993, 115: 369-370
[13] Angerer L, Davidson N, Murphy W, Lynch D, Attardi G. Cell, 1976, 9: 81-90
[14] Chang S K, Hamilton D A. J. Am. Chem. Soc., 1988, 110: 1318-1319
[15] Pedersen C J. J. Am. Chem. Soc., 1967, 89: 2495-2496
[16] Gale P A, Sessler J L, Kraal V, Lynch V. J. Am. Chem. Soc., 1996, 118: 5140-5141
[17] Gao C, Yan D Y. Prog. Polym. Sci., 2004, 29: 183-275
[18] Chen Y, Shen Z, Pastor-Perez L, Frey H, Stiriba S E. Macromolecules, 2005, 38: 227-229
[19] Liu H J, Chen Y, Zhu D D, Shen Z, Stiriba S E. React. Funct. Polym., 2007, 67: 383-395
[20] Kramer M, Kopagzynska M, Krause S, Haag R. J. Polym. Sci. Part A: Polym. Chem., 2007, 45: 2287-2303
[21] Liu C H, Gao C, Yan D Y. Macromolecules, 2006, 39: 8102-8111
[22] Kitajyo Y, Nawa Y, Tamaki M, Tani H, Takahashi K, Kaga H, Satoh T, Kakuchi T. Polymer, 2007, 48: 4683-4690
[23] Radowski M R, Shukla A, von Berlepsch H, Bottcher C, Pickaert G, Rehage H, Haag R. Angew. Chem. Int. Ed., 2007, 46: 1265-1269
[24] Tang L M, Fang Y, Tang X L. J. Polym. Sci. Part A: Polym. Chem., 2005, 43: 2921-2930
[25] Satoh T. Soft Mater, 2009, 5: 1972-1982
[26] Lou X L, Cheng F, Cao P F, Tang Q, Liu H J, Chen Y. Chem. Eur. J., 2009, 43: 11566-11572
[27] Tian W, Fan X D, Kong J, Liu Y Y, Liu T, Huang Y. Polymer, 2010, 51: 2556-2564
[28] Wan D C, Pu H T, Jin M. Macromolecules, 2010, 43: 3809-3816
[29] Chauhan A S, Sridevi S, Chalasani K B, Jain A K, Jain S K, Jain N K, Diwan P V. J. Controlled Release, 2003, 90: 335-343
[30] Wan D C, Pu H T, Cai X Y. Macromolecules, 2008, 41: 7787-7789
[31] Wan D C, Yuan J J, Pu H T. Macromolecules, 2009, 42: 1533-1540
[32] Wan D C, Pu H T, Jin M. Macromolecules, 2009, 42: 6448-6456
[33] Liu M J, Kono K, Frechent J M J. J. Controlled Release, 2000, 65: 121-131
[34] Beer P D, Gale P A. Angew. Chem. Int. Ed., 2001, 40: 486-516
[35] Wan D C, Jin M, Pu H T, Pan H Y, Chang Z H. React. Funct. Polym., 2010, 70: 916-922
[36] Wan D C, Pu H T, Jin M, Wang G W, Huang J L. J. Polym. Sci., Part A: Polym. Chem., 2011, 49: 2373-2381

[1] Muya Zhang, Jiaqi Liu, Wang Chen, Liqiang Wang, Jie Chen, Yi Liang. The Mechanism of Protein Condensation in Neurodegenerative Diseases [J]. Progress in Chemistry, 2022, 34(7): 1619-1625.
[2] Xiaoqing Yin, Weihao Chen, Boyuan Deng, Jialu Zhang, Wanqi Liu, Kaiming Peng. The Application and Mechanism of Superwetting Membrane in Demulsification of Oil-in-Water Emulsions [J]. Progress in Chemistry, 2022, 34(3): 580-592.
[3] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
[4] Wu Mingming, Lin Kaige, Aydengul Muhyati, Chen Cheng. Research on the Construction and Application of Superwetting Materials with Photothermal Effect [J]. Progress in Chemistry, 2022, 34(10): 2302-2315.
[5] Xiansheng Luo, Hanlin Deng, Jiangying Zhao, Zhihua Li, Chunpeng Chai, Muhua Huang. Synthesis and Application of Holey Nitrogen-Doped Graphene Material(C2N) [J]. Progress in Chemistry, 2021, 33(3): 355-367.
[6] Dechao Wang, Yangyang Xin, Xiaoqian Li, Dongdong Yao, Yaping Zheng. Porous liquids and Their Applications in Gas Capture and Separation [J]. Progress in Chemistry, 2021, 33(10): 1874-1886.
[7] Bo Li, Lijian Ma, Ning Luo, Shoujian Li, Yunming Chen, Jinsong Zhang. Extraction and Separation of Uranium via Solid Phase Extraction [J]. Progress in Chemistry, 2020, 32(9): 1316-1333.
[8] Fengfeng Gao, Yanyan Yang, Xiao Du, Xiaogang Hao, Guoqing Guan, Bing Tang. Electrically Switched Ion Membrane for Ion Selective Separation and Recovery: From ESIX to ESIPM [J]. Progress in Chemistry, 2020, 32(9): 1344-1351.
[9] Guohua Xu, Kai Cheng, Chen Wang, Conggang Li. Multi-Hierarchical Structural Characterization of Biological Condensed Matters [J]. Progress in Chemistry, 2020, 32(8): 1231-1239.
[10] Runtian Wang, Chunli Liu, Zhenbin Chen. Imprinted Composite Membranes [J]. Progress in Chemistry, 2020, 32(7): 989-1002.
[11] Xiaojian Li, Haijun Zhang, Saisai Li, Jun Zhang, Quanli Jia, Shaowei Zhang. Preparation of Superhydrophilic and Oleophobic Materials and Their Oil-Water Separation Properties [J]. Progress in Chemistry, 2020, 32(6): 851-860.
[12] Yang Liu, Xinbo Zhang, Yingcan Zhao. Two-Dimensional MoS2 Nanomaterials and Applications in Water Treatment [J]. Progress in Chemistry, 2020, 32(5): 642-655.
[13] Heli Wang, Meihua Zhu, Li Liang, Ting Wu, Fei Zhang, Xiangshu Chen. Preparation and Gas Separation Performance of SSZ-13 Zeolite Membranes [J]. Progress in Chemistry, 2020, 32(4): 423-433.
[14] Yaoyang Liu, Zhibin Liu, Chuang Zhao, Yu Zhou, Yang Gao, Hui He. Separation of Actinides: Extraction Chemistry and Application of Unsymmetric Diglycolamides [J]. Progress in Chemistry, 2020, 32(2/3): 219-229.
[15] Dan-Wei Zhang, Hui Wang, Zhan-Ting Li. Macromolecular and Supramolecular Helical Tubes: Synthesis and Functions [J]. Progress in Chemistry, 2020, 32(11): 1665-1679.
Viewed
Full text


Abstract

Supramolecular Fuzzy Recognition