中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (10): 2085-2094 Previous Articles   Next Articles

• Review •

Research Progress on Microporous Organic Polymers

Xu Shujun, Liang Liyun*, Li Buyi, Luo Yali, Liu Chengmei, Tan Bien*   

  1. Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
  • Received: Revised: Online: Published:
PDF ( 3067 ) Cited
Export

EndNote

Ris

BibTeX

Microporous organic polymers (MOPs) are a new type of porous materials, which have advantages with synthetic diversity, chemical and physical stability, pore size controllability, and pore surface modifiability. In recent years, MOPs have attracted an enormous attention in energy gas storage and greenhouse gas capture due to their great potential physisorptive gas storage. This paper describes the structure and characteristics of MOPs. The four different kinds of MOPs, such as polymers of intrinsic microporosity (PIMs), hyper-crosslinked polymers (HCPs), covalent organic frameworks (COFs) and conjugated microporous polymers (CMPs) are introduced respectively, including the recent research progress and the relationship between structures and properties. The applications of MOPs such as catalysis, separations and gas storage are discussed briefly. We also discuss the development of MOPs in future.

Contents
1 Introduction
2 Polymers of intrinsic microporosity
2.1 Insoluble PIMs
2.2 Soluble PIMs
3 Hyper-crosslinked polymers
4 Covalent organic frameworks
5 Conjugated microporous polymers
6 Prospects

CLC Number: 

[1] Maly K E. Journal of Materials Chemistry, 2009, 19(13): 1781-1787
[2] McKeown N B, Makhseed S, Budd P M. Chemical Communications, 2002, 2780-2781
[3] Tsyurupa M P, Davankov V A. Reactive & Functional Polymers, 2002, 53(2/3): 193-203
[4] Cote A P, Benin A I, Ockwig N W, O'Keeffe M, Matzger A J, Yaghi O M. Science, 2005, 310(5751): 1166-1170
[5] Jiang J X, Su F, Trewin A, Wood C D, Campbell N L, Niu H, Dickinson C, Ganin A Y, Rosseinsky M J, Khimyak Y Z, Cooper A I. Angewandte Chemie-International Edition, 2007, 46(45): 8574-8578
[6] Jiang J X, Cooper A I. Top of Current Chemistry. Verlag Berlin Heidelberg: Springer, 2010. 293: 1-33
[7] 梁丽芸(Liang L Y), 李步怡(Li B Y), 陈冰(Chen B), 周壁(Zhou B), 陈可平(Chen K P), 谭必恩(Tan B E). 高分子通报(Polymer Bulletin), 2008, (10): 6-12
[8] Ben T, Ren H, Ma S Q, Cao D P, Lan J H, Jing X F, Wang W C, Xu J, Deng F, Simmons J M, Qiu S L, Zhu G S. Angewandte Chemie-International Edition, 2009, 48(50): 9457-9460
[9] Cooper A I. Advanced Materials, 2009, 21(12): 1291-1295
[10] McKeown N B. Journal of Materials Chemistry, 2000, 10(9): 1979-1995
[11] McKeown N B, Hanif S, Msayib K, Tattershall C E, Budd P M. Chemical Communications, 2002, 2782-2783
[12] Budd P M, Ghanem B, Msayib K, McKeown N B, Tattershall C. Journal of Materials Chemistry, 2003, 13(11): 2721-2726
[13] McKeown N B, Gahnem B, Msayib K J, Budd P M, Tattershall C E, Mahmood K, Tan S, Book D, Langmi H W, Walton A. Angewandte Chemie-International Edition, 2006, 45(11): 1804-1807
[14] Ghanem B S, Msayib K J, McKeown N B, Harris K D M, Pan Z, Budd P M, Butler A, Selbie J, Book D, Walton A. Chemical Communications, 2007, 67-69
[15] Ghanem B S, Hashem M, Harris K D M, Msayib K J, Xu M C, Budd P M, Chaukura N, Book D, Tedds S, Walton A, McKeown N B. Macromolecules, 2010, 43(12): 5287-5294
[16] Budd P M, Ghanem B S, Makhseed S, McKeown N B, Msayib K J, Tattershall C E. Chemical Communications, 2004, 230-231
[17] Weber J, Su O, Antonietti M, Thomas A. Macromolecular Rapid Communications, 2007, 28(18/19): 1871-1876
[18] Chou C H, Reddy D S, Shu C F. Journal of Polymer Science Part A-Polymer Chemistry, 2002, 40(21): 3615-3621
[19] Kim Y H, Kim H S, Kwon S K. Macromolecules, 2005, 38(19): 7950-7956
[20] Ghanem B S, McKeown N B, Budd P M, Fritsch D. Macromolecules, 2008, 41(5): 1640-1646
[21] Ghanem B S, McKeown N B, Budd P M, Al-Harbi N M, Fritsch D, Heinrich K, Starannikova L, Tokarev A, Yampolskii Y. Macromolecules, 2009, 42(20): 7881-7888
[22] Lee J Y, Wood C D, Bradshaw D, Rosseinsky M J, Cooper A I. Chemical Communications, 2006, 2670-2672
[23] Ahn J H, Jang J E, Oh C G, Ihm S K, Cortez J, Sherrington D C. Macromolecules, 2006, 39(2): 627-632
[24] Wood C D, Tan B, Trewin A, Niu H J, Bradshaw D, Rosseinsky M J, Khimyak Y Z, Campbell N L, Kirk R, Stockel E, Cooper A I. Chemistry of Materials, 2007, 19(8): 2034-2048
[25] Tsyurupa M P, Davankov V A. Reactive & Functional Polymers, 2006, 66(7): 768-779
[26] Davankov V A, Pastukhov A V, Tsyurupa M P. Journal of Polymer Science Part B-Polymer Physics, 2000, 38(11): 1553-1563
[27] Germain J, Hradil J, Frechet J M J, Svec F. Chemistry of Materials, 2006, 18(18): 4430-4435
[28] Wood C D, Tan B, Trewin A, Su F, Rosseinsky M J, Bradshaw D, Sun Y, Zhou L, Cooper A I. Advanced Materials, 2008, 20(10): 1916-1921
[29] Li B Y, Huang X, Liang L Y, Tan B. Journal of Materials Chemistry, 2010, 20(35): 7444-7450
[30] Li B, Su F, Luo H K, Liang L, Tan B. Microporous and Mesoporous Materials, 2011, 138(1/3): 207-214
[31] Kitagawa S, Kitaura R, Noro S. Angewandte Chemie-International Edition, 2004, 43(18): 2334-2375
[32] Yaghi O M, O'Keeffe M, Ockwig N W, Chae H K, Eddaoudi M, Kim J. Nature, 2003, 423(6941): 705-714
[33] Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O'Keeffe M, Yaghi O M. Science, 2002, 295(5554): 469-472
[34] Li H, Eddaoudi M, O'Keeffe M, Yaghi O M. Nature, 1999, 402(6759): 276-279
[35] Tilford R W, Gemmill W R, zur Loye H C, Lavigne J J. Chemistry of Materials, 2006, 18(22): 5296-5301
[36] Kuhn P, Antonietti M, Thomas A. Angewandte Chemie-International Edition, 2008, 47(18): 3450-3453
[37] Kuhn P, Thomas A, Antonietti M. Macromolecules, 2009, 42(1): 319-326
[38] Bojdys M J, Jeromenok J, Thomas A, Antonietti M. Advanced Materials, 2010, 22(19): 2202-2205
[39] El-Kaderi H M, Hunt J R, Mendoza-Cortes J L, Cote A P, Taylor R E, O'Keeffe M, Yaghi O M. Science, 2007, 316(5822): 268-272
[40] Uribe-Romo F J, Hunt J R, Furukawa H, Klock C, O'Keeffe M, Yaghi O M. Journal of the American Chemical Society, 2009, 131(13): 4570-4571
[41] Spitler E L, Dichtel W R. Nature Chemistry, 2010, 2(8): 672-677
[42] Jiang J X, Su F, Trewin A, Wood C D, Niu H, Jones J T A, Khimyak Y Z, Cooper A I. Journal of the American Chemical Society, 2008, 130(24): 7710-7720
[43] Jiang J X, Su F, Niu H, Wood C D, Campbell N L, Khimyak Y Z, Cooper A I. Chemical Communications, 2008, 486-488
[44] Fairlamb I J S, Bauerlein P S, Marrison L R, Dickinson J M. Chemical Communications, 2003, 632-633
[45] Weber J, Thomas A. Journal of the American Chemical Society, 2008, 130(20): 6334-6335
[46] Dawson R, Su F B, Niu H J, Wood C D, Jones J T A, Khimyak Y Z, Cooper A I. Macromolecules, 2008, 41(5): 1591-1593
[47] Jiang J X, Trewin A, Su F B, Wood C D, Niu H J, Jones J T A, Khimyak Y Z, Cooper A I. Macromolecules, 2009, 42(7): 2658-2666
[48] Jiang J X, Laybourn A, Clowes R, Khimyak Y Z, Bacsa J, Higgins S J, Adams D J, Cooper A I. Macromolecules, 2010, 43(18): 7577-7582
[49] Du X, Sun Y L, Tan B E, Teng Q F, Yao X J, Su C Y, Wang W. Chemical Communications, 2010, 970-972
[50] Chen L, Yang Y, Jiang D L. Journal of the American Chemical Society, 2010, 132(26): 9138-9143
[51] Li A, Lu R F, Wang Y, Wang X, Han K L, Deng W Q. Angewandte Chemie-International Edition, 2010, 49(19): 3330-3333

[1] Jie Wang, Yaqing Feng, Bao Zhang. MOF-COF Hybrid Frameworks Materials [J]. Progress in Chemistry, 2022, 34(6): 1308-1320.
[2] Bo Tang, Wei Wang, Aiqin Luo. New Porous Materials Used as Chiral Stationary Phase for Chromatography [J]. Progress in Chemistry, 2022, 34(2): 328-341.
[3] Zhao Ding, Weijie Yang, Kaifu Huo, Leon Shaw. Thermodynamics and Kinetics Tuning of LiBH4 for Hydrogen Storage [J]. Progress in Chemistry, 2021, 33(9): 1586-1597.
[4] Jianlin Shi, Zile Hua. Condensed State Chemistry in the Synthesis of Inorganic Nano- and Porous Materials [J]. Progress in Chemistry, 2020, 32(8): 1060-1075.
[5] Tingting Gu, Jian Gu, Yu Zhang, Hua Ren. Metal Borohydride-Based System for Solid-State Hydrogen Storage [J]. Progress in Chemistry, 2020, 32(5): 665-686.
[6] Suyan Zhao, Chang Liu, Hao Xu, Xiaobo Yang. Two-Dimensional Covalent Organic Frameworks Photocatalysts [J]. Progress in Chemistry, 2020, 32(2/3): 274-285.
[7] Li Liangjun, Jianhui Deng, Jianwei Guo, Hangbo Yue. Synthesis and Properties of Microporous Organic Polymers Based on Adamantane [J]. Progress in Chemistry, 2020, 32(2/3): 190-203.
[8] Qiang Jia, Hongwei Song, Sheng Tang, Jing Wang, Yinxian Peng. Synthesis of the Functionalized Porous Materials and Their Applications in the Specific Recognition and Separation [J]. Progress in Chemistry, 2019, 31(8): 1148-1158.
[9] Jie Liu, Yuan Zeng, Jun Zhang, Haijun Zhang, Jianghao Liu. Preparation, Structures and Properties of Three-Dimensional Graphene-Based Materials [J]. Progress in Chemistry, 2019, 31(5): 667-680.
[10] Xinxin Jiang, Chengjun Zhao, Chunju Zhong, Jianping Li*. The Electrochemical Sensors Based on MOF and Their Applications [J]. Progress in Chemistry, 2017, 29(10): 1206-1214.
[11] Yu Xianglin, Chen Xiaojiao, Zhang Biyu, Rao Cong, He Yuan, Li Junbo. Ordered Mesoporous Material-Based Fluorescence Probes and Their Applications [J]. Progress in Chemistry, 2016, 28(6): 896-907.
[12] Li Chao, Fan Meiqiang, Chen Haichao, Chen Da, Tian Guanglei, Shu Kangying. Thermodynamics and Kinetics Modifications on the Li-Mg-N-H Hydrogen Storage System [J]. Progress in Chemistry, 2016, 28(12): 1788-1797.
[13] Yu Na, Ding Huimin, Wang Cheng. Synthesis and Application of Organic Molecular Cages [J]. Progress in Chemistry, 2016, 28(12): 1721-1731.
[14] Wang Fangli, Hong Min, Xu Lidan, Geng Zhirong. Nanomaterial-Based Surface-Assisted Laser Desorption Ionization Mass Spectroscopy [J]. Progress in Chemistry, 2015, 27(5): 571-584.
[15] Zhang Xiaomin, Zhang Li, He Xueying, Wu Juntao. Fabrication and Application of New Polymer-Based Materials by Freeze-Drying [J]. Progress in Chemistry, 2014, 26(11): 1832-1839.