中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (10): 2079-2084 Previous Articles   Next Articles

• Review •

Pathways and Mechanisms of Liquid Fuel 2,5-Dimethylfuran from Biomass

Hu Lei, Sun Yong*, Lin Lu*   

  1. School of Energy Research, Xiamen University, Xiamen 361005, China
  • Received: Revised: Online: Published:
PDF ( 1336 ) Cited
Export

EndNote

Ris

BibTeX

With the decrease of fossil fuel reserves, looking for renewable liquid fuels from biomass have attracted increasingly interest. 2,5-Dimethylfuran (DMF) from renewable biomass with special advantages of high energy density, high boiling point, high octane number, and immiscible with water has been considered as a kind of promising liquid fuel. In this paper, the chemical pathways, the production methods, the reaction mechanisms and the combustion performance of DMF from biomass are mainly summarized, and the future research trends are prospected.

Contents
1 Introduction
2 Chemical pathways of production of DMF from biomass
3 Pathways and reaction mechanisms of production of DMF from biomass
3.1 DMF production in biphasic system
3.2 DMF production in N,N-dimethylacetamide
3.3 DMF production in ionic liquids
3.4 DMF production in formic acid
4 The combustion performance of DMF
5 Perspective

CLC Number: 

[1] Agarwal A K. Prog. Energ. Combust., 2007, 33(3): 233-271
[2] Kintisch E. Science, 2007, 315(5813): 747-747
[3] Atsumi S, Hanai T, Liao J C. Nature, 2008, 451(7174): 86-89
[4] Demirbas M F. Appl. Energ., 2009, 86(S1): S151-S161
[5] Naik S N, Goud V V, Rout P K, Dalai A K. Renew. Sust. Energ. Rev., 2010, 14(2): 578-597
[6] Roman-Leshkov Y, Barrett C J, Liu Z Y, Dumesic J A. Nature, 2007, 447(7147): 982-986
[7] Tian G H, Daniel R, Li H Y, Xu H M, Shuai S J, Richards P. Energy Fuels, 2010, 24(7): 3898-3905
[8] 田国弘 (Tian G H), 徐宏明 (Xu H M), Daniel R, 李海鹰 (Li H Y), 李雁飞 (Li Y F). 汽车安全与节能学报 (Journal of Automotive Safety and Energy), 2010, 1(2): 132-140
[9] Inderwildi O R, King D A. Energy. Environ. Sci., 2009, 2(4): 343-346
[10] Balat M. Energy. Convers. Manage., 2010, 52(2): 858-875
[11] Zhao H B, Holladay J E, Brown H, Zhang Z C. Science, 2007, 316(5831): 1597-1600
[12] Mascal M, Nikitin E B. Angew. Chem., 2008, 120(41): 8042-8044
[13] Schmidt L D, Dauenhauer P J. Nature, 2007, 447: 914-915
[14] Binder J B, Raines R T. J. Am. Chem. Soc., 2009, 131(5): 1979-1985
[15] Tong X L, Ma Y, Li Y D. Appl. Catal. A: Gen., 2010, 385(1/2): 1-13
[16] Jiao C Q, Adams S F, Garscadden A. Jpn. J. Appl. Phys., 2009, 106(1): art. no. 0133061
[17] Chidambaram M, Bell A T. Green Chem., 2010, 12: 1253-1262
[18] 吴学松 (Wu X S), 卫立夏 (Wei L X), 黄佐华 (Huang Z H), 袁涛 (Yuan T), 张奎文 (Zhang K W). 科学通报 (Chinese Science Bulletin), 2008, 53(23): 2872-2880
[19] Zhong S H, Daniel R, Xu H M, Zhang J, Turner D, Wyszynski M L, Richards P. Energy Fuels, 2010, 24(5): 2891-2899
[20] Thananatthanachon T, Rauchfuss T B. Agnew. Chem. Int. Ed., 2010, 49(37): 6616-6618
[21] Luque R, Herrero-Davila L, Campelo J M, Clark J H, Hidalgo J M, Luna D. Energy Environ. Sci., 2008, 1(5): 542-564
[22] Daniel R, Tian G H, Xu H M, Wyszynski M L, Wu X S, Huang Z H. Fuel, 2011, 90(2): 449-458
[23] Yong G, Zhang Y G, Ying J Y. Agnew. Chem. Int. Ed., 2008, 120(48): 9485-9488
[24] Hu S Q, Zhang Z F, Song J L, Zhou Y X, Han B X. Green Chem., 2009, 11(11): 1746-1749
[25] Li C Z, Zhang Z H, Zhao Z B K. Tetrahedron Lett., 2009, 50(38): 5403-5405
[26] Shimizu K I, Uozumi R, Satsuma A. Catal. Commun., 2009, 10(14): 1849-1853
[27] Su Y, Brown H M, Huang X W, Zhou X D, Amonette J E, Zhang Z C. Appl. Catal. A: Gen., 2009, 361(1/2): 117-122
[28] Qi X H, Watanabe M, Aida T M, Smith R L. Chem. Sus. Chem., 3(9): 1071-1077
[29] Zhang Y T, Du H B, Qian X H, Chen E Y X. Energy Fuels, 2010, 24(4): 2410-2417
[30] Chen T M, Lin L. Chin. J. Chem., 2010, 28(9): 1773-1776
[31] Chun J A, Lee J W, Yi Y B, Hong S S, Chung C H. Starch/Stärke, 2010, 62(6): 326-330 《化学进展》近期目次预告 “无涯之知,世代之功”——汪猷的主要科学成就和学术思想 (陈耀全) 功能性无机-晶态纳米纤维素复合材料的研究进展与展望 (徐雁) 多蝶烯及其衍生物的合成与应用 (曹菁 江一 陈传峰) 基于Belousov-Zhabotinsky自振荡反应的智能高分子 (周宏伟 梁恩湘 郑朝晖 丁小斌 彭宇行)

[1] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[2] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[3] Di Zeng, Xuechen Liu, Yuanyi Zhou, Haipeng Wang, Ling Zhang, Wenzhong Wang. Renewable Aromatic Production from Biomass-Derived Furans [J]. Progress in Chemistry, 2022, 34(1): 131-141.
[4] Yu Yin, Chunhui Ma, Wei Li, Shouxin Liu. Solvent System and Conversion Mechanism of 5-Hydroxymethylfurfural Preparation from Glucose [J]. Progress in Chemistry, 2021, 33(10): 1856-1873.
[5] Xuechen Liu, Juanjuan Xing, Haipeng Wang, Yuanyi Zhou, Ling Zhang, Wenzhong Wang. Selective HMF Oxidation into Bio-Based Polyester Monomer FDCA [J]. Progress in Chemistry, 2020, 32(9): 1294-1306.
[6] Lihua Qian, Guojun Lan, Xiaoyan Liu, Qingfeng Ye, Ying Li. Heterogeneous Catalysts for Biomass-Based Molecules Aqueous-Phase Catalytic Hydrogenation [J]. Progress in Chemistry, 2019, 31(8): 1075-1085.
[7] Jinxin Yi, Zhipeng Huo, Abdullah M. Asiri, Khalid A. Alamry, Jiaxing Li. Application of Agroforestry Waste Biomass Adsorption Materials in Water Pollution Treatment [J]. Progress in Chemistry, 2019, 31(5): 760-772.
[8] Jiawei Xie, Xiangwen Zhang, Junjian Xie, Genkuo Nie, Lun Pan, Jijun Zou*. Synthesis of High-Density Jet Fuels from Biomass [J]. Progress in Chemistry, 2018, 30(9): 1424-1433.
[9] Yunchao Feng, Miao Zuo, Xianhai Zeng*, Yong Sun, Xing Tang, Lu Lin*. Preparation of 5-Hydroxymethylfurfural from Glucose [J]. Progress in Chemistry, 2018, 30(2/3): 314-324.
[10] Yong Sun, Xiaoqiang Song, Yong Sun*, Xianhai Zeng, Xing Tang, Lu Lin*. Strategies of Prior-Fractionation for the Graded Utilization of Lignocellulose [J]. Progress in Chemistry, 2017, 29(10): 1273-1284.
[11] Wei Junnan, Tang Xing, Sun Yong, Zeng Xianhai, Lin Lu. Applications of Novel Biomass-Derived Platform Molecule γ-Valerolactone [J]. Progress in Chemistry, 2016, 28(11): 1672-1681.
[12] Tang Xing, Hu Lei, Sun Yong, Zeng Xianhai, Lin Lu. Conversion of Biomass to Novel Platform Chemical γ-Valerolactone by Selective Reduction of Levulinic Acid [J]. Progress in Chemistry, 2013, 25(11): 1906-1914.
[13] Guo Xiao, Yan Yani, Zhang Yahong, Tang Yi. Heterogeneously Catalytic Transformation of Biomass-Derived Sugars [J]. Progress in Chemistry, 2013, 25(11): 1915-1927.
[14] Zhang Jiaren, Deng Tianyin, Liu Haichao*. Catalytic Production of Liquid Biofuels from Triglyceride Feedstocks and Lignocellulose [J]. Progress in Chemistry, 2013, 25(0203): 192-208.
[15] Chen Hongzhang, Peng Xiaowei. Steam Explosion Technology Applied to High-Value Utilization of Herb Medicine Resources [J]. Progress in Chemistry, 2012, (9): 1857-1864.