中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (10): 2065-2078 Previous Articles   Next Articles

• Review •

Dimeric Pyrrole-Imidazole Alkaloids

Wang Jue, Zhan Yuexiong, Jiang Biao*   

  1. Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
  • Received: Revised: Online: Published:
PDF ( 1023 ) Cited
Export

EndNote

Ris

BibTeX

Over the last two decades, numerous dimeric pyrrole-imidazole alkaloids have been isolated from marine sponges, and exhibit exciting bioactivities. This may lead to new ideas for biomimetic total synthesis of this group of natural molecules even in advance of their identification and characterization. The interest of organic chemists in the total synthesis of the pyrrole-imidazole alkaloids has strongly increased because of their structural novelty, molecular diversity, and promising biological activities. Challenges are also plentiful from a synthetic point of view. Architectural complexity, unusually high nitrogen content (N/C ≈ 1 ∶2), unknown absolute stereochemistry are just some of the dreadful aspects one has to take into account while planning a total synthesis of these alkaloids. This article will account for the recent progress in achieving the total synthesis of these pyrrole-imidazole dimers.

Contents
1 Introduction
2 Classification of pyrrole-imidazole alkaloids
3 Synthesis of pyrrole-imidazole dimers
3.1 Nagelamide D
3.2 Mauritiamine
3.3 Sceptrin
3.4 Ageliferin
3.5 Axinellamines and massadine
3.6 Palau'amine
3.7 New dimers without reports
4 Conclusions and outlook

CLC Number: 

[1] Abad M J, Bermejo P. Studies in Natural Products Chemistry, Vol. 25 (Part F) (Ed. Atta-ur-Rahman). Elsevier, 2001. 683-756
[2] 易杨华(Yang Y H), 焦炳华(Jiao B H). 现代海洋药物学(Modern Marine Pharmacology). 北京: 科学出版社(Beijing: Science Press), 2006.5
[3] Kobayashi J, Ishibashi M. in The Alkaloids: Chemistry and Pharmacology, Vol. 41 (Ed. Brossi A), New York: Academic Press, 1992. 41
[4] Faulkner D. J. Nat. Prod. Rep., 1999, 16: 155-158
[5] 刘家峰(Liu J F), 郭松坡(Guo S P), 姜标(Jiang B). 有机化学(Chinese Journal of Organic Chemistry), 2005, 25(7): 788-799
[6] Aiello A, Fattorusso E, Menna M, Taglialatela-Scafati O. in Modern Alkaloids: Structure, Isolation, Synthesis and Biology (Eds. Fattorusso E, Taglialatela-Scafati O). Weinheim: Wiley-VCH, 2008. 271-302
[7] Al Mourabit A, Potier P. Eur. J. Org. Chem., 2001, 237-243
[8] Hoffmann H, Lindel T. Synthesis, 2003, 1753-1783
[9] Forenza S, Minale L, Riccio R, Fattorusso E. J. Chem. Soc. D, 1971, 1129-1130
[10] Kobayashi J, Nakamura H, Ohizumi Y. Experientia, 1988, 44: 86-88
[11] Chanas B, Pawlik J R, Lindel T, Fenical W. J. Exp. Mar. Biol. Ecol., 1996, 208: 185-196
[12] Wilson D M, Puyana M, Fenical W, Pawlik J R. J. Chem. Ecol., 1999, 25: 2811-2823
[13] Assmann M, Lichte E, Pawlik J R, Köck M. Mar. Ecol. Prog. Ser., 2000, 207: 255-262
[14] Kobayashi J, Ohizumi Y, Nakamura H, Hirata Y. Experientia, 1986, 42: 1176-1179
[15] Kobayashi J, Inaba K, Tsuda M. Tetrahedron, 1997, 53: 16679-16682
[16] Tsuda M, Uemoto H, Kobayashi J. Tetrahedron Lett., 1999, 40: 5709-5712
[17] Cafieri F, Fattorusso E, Mangoni A, Taglialatela-Scafati O. Tetrahedron Lett., 1996, 37: 3587-3590
[18] Cafieri F, Carnuccio R, Fattorusso E, Taglialatela-Scafati O, Vallefuoco T. Bioorg. Med. Chem. Lett., 1997, 7: 2283-2288
[19] Uemoto H, Tsuda M, Kobayashi J. J. Nat. Prod., 1999, 62: 1581-1583
[20] Cafieri F, Fattorusso E, Mangoni A, Taglialatela-Scafati O. Tetrahedron, 1996, 52: 13713-13720
[21] Jiang B, Liu J F, Zhao S Y. Org. Lett., 2001, 3: 4011-4013
[22] Jiang B, Liu J F, Zhao S Y. Org. Lett., 2002, 4: 3951-3953
[23] Jiang B, Liu J F, Zhao S Y. J. Org. Chem., 2003, 68: 2376-2384
[24] Patil A D, Freyer A J, Killmer L, Hofmann G, Johnson R K. Nat. Prod. Lett., 1997, 9: 201-207
[25] Kobayashi J, Ohizumi Y, Nakamura H, Hirata Y, Wakamatsu K, Miyazawa T. Experientia, 1986, 42: 1064-1067
[26] Inaba K, Sato H, Tsuda M, Kobayashi J. J. Nat. Prod., 1998, 61: 693-695
[27] Pettit G R, McNulty J, Herald D L, Doubek D L, Chapuis J C, Schmidt J M, Tackett L P, Boyd M R. J. Nat. Prod., 1997, 60: 180-183
[28] 徐效华(Xu X H), 姚广民(Yao G M), 孔垂华(Kong C H), 李艳明(Li Y M), 林长江(Lin C J), 王昕(Wang X), 苏镜娱(Su J Y), 曾陇梅(Zeng L M). 有机化学(Chin. J. Org. Chem.), 2003, 23: 953-955
[29] D’Ambrosio M, Guerriero A, Debitus C, Ribes O, Pusset J, Leroy S, Pietra F. J. Chem. Soc. Chem. Commun., 1993, 1305-1306
[30] D’Ambrosio M, Guerriero A, Ripamonti M, Debitus C, Waikedre J, Pietra F. Helv. Chim. Acta, 1996, 79: 727-735
[31] Hong T W, Jimenez D R, Molinski T F. J. Nat. Prod., 1998, 61: 158-161
[32] Endo T, Tsuda M, Okada T, Mitsuhashi S, Shima H, Kikuchi K, Mikami Y, Fromont J, Kobayashi J I. J. Nat. Prod., 2004, 67: 1262-1267
[33] Bhandari M R, Sivappa R, Lovely C J. Org. Lett., 2009, 11: 1535-1538
[34] Lovely C J, Du H, Sivappa R, Bhandari M R, He Y, Dias H V R. J. Org. Chem., 2007, 72: 3741-3749
[35] Kobayashi J, Ishibashi M. in The Alkaloids: Chemistry and Pharmacology (Ed. Brossi A). New York: Academic Press, 1992, 41: 41-124
[36] Faulkner D J. Nat. Prod. Rep., 1996, 13: 75-77
[37] Berlinck R G S. Nat. Prod. Rep., 1996, 13: 377-380
[38] Tsukamoto S, Kato H, Hirota H, Fusetani N. J. Nat. Prod., 1996, 59: 501-503
[39] Olofson A, Yakushijin K, Horne D A. J. Org. Chem., 1997, 62: 7918-7919
[40] Lancini G C, Lazzari E J. Heterocycl. Chem., 1966, 3: 152-154
[41] Lancini G C, Lazzari E, Arioli V, Bellani P. J. Med. Chem., 1969, 12: 775-780
[42] Walker R P, Faulkner D J, Van Engen D, Clardy J. J. Am. Chem. Soc., 1981, 103: 6772-6773
[43] Keifer P A, Schwartz R E, Koker M E S, Hughes R G J, Rittschof D, Rinehart K L. J. Org. Chem., 1991, 56: 2965-2975
[44] Cafieri F, Carnuccio R, Fattorusso E, Taglialatela-Scafati O, Vallefuoco T. Bioorg. Med. Chem. Lett., 1997, 7: 2283-2288
[45] Shen X, Perry T L, Dunbar C D, Kelly-Borges M, Hamann M T. J. Nat. Prod., 1998, 61: 1302-1303
[46] Rosa R, Silva W, De Motta G E, Rodriguez A D, Morales J J, Ortiz M. Experientia, 1992, 48: 885-887
[47] Baran P S, Zografos A L, O’Malley D P. J. Am. Chem. Soc., 2004, 126: 3726-3727
[48] Baran P S, Li K, O’Malley D P, Mitsos C. Angew. Chem., Int. Ed., 2006, 45: 249-252
[49] Birman V B, Jiang X T. Org. Lett., 2004, 6: 2369-2371
[50] Keifer P A, Schwartz R E, Koker M E S, Hughes R G Jr, Rittschof D, Rinehart K L. J. Org. Chem., 1991, 56: 2965-2975
[51] Rinehart K L. Pure Appl. Chem., 1989, 61: 525-528
[52] Kobayashi J, Tsuda M, Murayama T, Nakamura H, Ohizumi Y, Ishibashi M, Iwamura M, Ohta T, Nozoe S. Tetrahedron, 1990, 46: 5579-5586
[53] Baran P S, O’Malley D P, Zografos A L. Angew. Chem., Int. Ed., 2004, 43: 2674-2677
[54] O’Malley D P, Li K, Maue M, Zografos A L, Baran P S. J. Am. Chem. Soc., 2007, 129: 4762-4775
[55] Northrop B H, O’Malley D P, Zografos A L, Baran P S, Houk K N. Angew. Chem. Int. Ed., 2006, 45: 4126-4130
[56] Kawasaki I, Sakaguchi N, Fukushima N, Fujioka N, Nikaido F, Yamashita M, Ohta S. Tetrahedron Lett., 2002, 43: 4377-4380
[57] Kawasaki I, Sakaguchi N, Khadeer A, Yamashita M, Ohta S. Tetrahedron, 2006, 62: 10182-10192
[58] Lovely C J, Du H, Sivappa R. J. Org. Chem., 2007, 72: 3741-3749
[59] Sivappa R, Mukherjee S, Dias H V R, Lovely C. J. Org. Biomol. Chem., 2009, 7: 3215-3218
[60] Tan X, Chen C. Angew. Chem. 2006, 118: 4451-4454; Angew. Chem. Int. Ed., 2006, 45: 4345-4358
[61] Garrido H, Nakadai M, Vimolratana M, Li Q, Doundoulakis T, Harran P G. Angew. Chem., 2005, 117: 775-779; Angew. Chem. Int. Ed., 2005, 44: 765-769
[62] Dilley A S, Romo D. Org. Lett., 2001, 3: 1535-1538
[63] Poullennec K G, Romo D. J. Am. Chem. Soc., 2003, 125: 6344-6345
[64] Dransfield P J, Wang S, Dilley A, Romo D. Org. Lett., 2005, 7: 1679-1682
[65] Dransfield P J, Dilley A S, Wang S, Romo D. Tetrahedron, 2006, 62: 5223-5247
[66] Wang S, Dilley A S, Poullenec K G, Romo D. Tetrahedron, 2006, 62: 7155-7161
[67] Du H, He Y, Sivappa R, Lovely C J. Synlett, 2006, 965-992
[68] Overman L E, Rogers B N, Tellew J E, Trenkle W C. J. Am. Chem. Soc., 1997, 119: 7159-7160
[69] Belanger G, Hong F T, Overman L E, Rogers B N, Tellew J E, Trenkle W C. J. Org. Chem., 2002, 67: 7880-7883
[70] Katz J D, Overman L E. Tetrahedron, 2004, 60: 9559-9568
[71] Lanman B A, Overman L E. Heterocycles, 2006, 70: 557-570
[72] Koenig S G, Miller S M, Leonard K A, Lowe R S, Chen B C, Austin D J. Org. Lett., 2003, 5: 2203-2206
[73] Starr J T, Koch G, Carreira E M. J. Am. Chem. Soc., 2000, 122: 8793-8794
[74] Spoering R M. Thesis PhD. Harvard University, 2005
[75] Urban S, Leone P D A, Carroll A R, Fechner G A, Smith J, Hooper J N A, Quinn R J. J. Org. Chem., 1999, 64: 731-735
[76] Nishimura S, Matsunaga S, Shibazaki M, Suzuki K, Furihata K, Van Soest R W M, Fusetani N. Org. Lett., 2003, 5: 2255-2257
[77] O'Malley D P, Yamaguchi J, Young I S, Seiple I B, Baran P S. Angew. Chem. Int. Ed., 2008, 47: 3581-3583
[78] Su S, Seiple I B, Young I S, Baran P S. J. Am. Chem. Soc., 2008, 130: 16490-16491
[79] Kinnel R B, Gehrken H P, Scheuer P J. J. Am. Chem. Soc., 1993, 115: 3376-3377
[80] Kato T, Shizuri Y, Izumida H, Yokoyama A, Endo M. Tetrahedron Lett., 1995, 36: 2133-2136
[81] Kobayashi J, Suzuki M, Tsuda M. Tetrahedron, 1997, 53: 15681-15684
[82] Kobayashi H, Kitamura K, Nagai K, Nakao Y, Fusetani N, Van Soest R W M, Matsunaga S, Carteramine A. Tetrahedron Lett., 2007, 48: 2127-2129
[83] Grube A, Köck M. Angew. Chem. Int. Ed., 2007, 46: 2320-2324
[84] Lanman B A, Overman L E, Paulini R, White N S. J. Am. Chem. Soc., 2007, 129: 12896-12900
[85] Dilley A S, Romo D. Org. Lett., 2001, 3: 1535-1538
[86] Wang S, Dilley A S, Poullennec K G, Romo D. Tetrahedron, 2006, 62: 7155-7161
[87] Dransfield P J, Dilley A S, Wang S, Romo D. Tetrahedron, 2006, 62: 5223-5247
[88] Zancanella M A, Romo D. Org. Lett., 2008, 10: 3685-3688
[89] Wang S, Romo D. Angew. Chem. Int. Ed., 2008, 47: 1284-1286
[90] Garrido-Hemandez H, Nakadai M, Vimolratana M, Li Q, Doundoulakis T, Harran P G. Angew. Chem. Int. Ed., 2005, 44: 765-769
[91] Li Q, Hurley P, Ding H, Roberts A G, Akella R, Harran P G. J. Org. Chem., 2009, 74: 5909-5919
[92] Overman L E, Rogers B N, Tellew J E, Trenkle W C. J. Am. Chem. Soc., 1997, 119: 7159-7160
[93] Blanger G, Hong F T, Overman L E, Rogers B N, Tellew J E, Trenkle W C. J. Org. Chem., 2002, 67: 7880-7883
[94] Katz J D, Overman L E. Tetrahedron, 2004, 60: 9559-9568
[95] Lanman B A, Overman L E, Paulini R, White N S. J. Am. Chem. Soc., 2007, 129: 12896-12890
[96] Seiple I B, Su S, Young I S, Lewis C A, Yamaguchi J, Baran P S. Angew. Chem. Int. Ed., 2010, 49: 1095-1098
[97] Araki A, Tsuda M, Kubota T, Mikami Y, Fromont J, Kobayashi J. Org. Lett., 2007, 9: 2369-2371
[98] Araki A, Kubota T, Tsuda M, Mikami Y, Fromont J, Kobayashi J. Org. Lett., 2008, 10: 2099-2102
[99] Araki A, Kubota T, Aoyama K, Mikami Y, Fromont J, Kobayashi J. Org. Lett., 2009, 11: 1785-1788
[100] Patel K, Laville R, Martin M T, Tilvi S, Moriou C, Gallard J F, Ermolenko L, Mourabit A. Angew. Chem. Int. Ed., 2010, 49: 4775-4779

[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[3] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[4] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[5] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[6] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[7] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[8] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[9] Fangyuan Li, Junhao Li, Yujie Wu, Kaixiang Shi, Quanbing Liu, Hongjie Peng. Design and Preparation of Electrode Nanomaterials with “Yolk-Shell”Structure for Lithium/Sodium-Ion/Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2022, 34(6): 1369-1383.
[10] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[11] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[12] Xiuli Shao, Siqi Wang, Xuan Zhang, Jun Li, Ningning Wang, Zheng Wang, Zhongyong Yuan. Fabrication and Application of MFI Zeolite Nanosheets [J]. Progress in Chemistry, 2022, 34(12): 2651-2666.
[13] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
[14] Yang Linyan, Guo Yupeng, Li Zhengjia, Cen Jie, Yao Nan, Li Xiaonian. Modulation of Surface and Interface Properties of Cobalt-Based Fischer-Tropsch Synthesis Catalyst [J]. Progress in Chemistry, 2022, 34(10): 2254-2266.
[15] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.
Viewed
Full text


Abstract

Dimeric Pyrrole-Imidazole Alkaloids