中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (10): 2055-2064 Previous Articles   Next Articles

• Review •

Liquid-Phase Synthesis of Gold Nanoclusters

Liu Zhao, Jin Shenshen, Zhu Manzhou*   

  1. School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039, China
  • Received: Revised: Online: Published:
PDF ( 1415 ) Cited
Export

EndNote

Ris

BibTeX

As a kind of transition metal nanoclusters, gold nanoclusters have potential applications in catalysis, optics, electronics and biotechnology due to the advantages of their special physical and chemical properties that are different from other nanomaterials. The progress in liquid-phase synthesis of gold nanoclusters is summarized here, which includes the synthetic method and crystal structure of gold clusters protected by phosphides or thiols. We hope that this paper could be helpful for the scientists to research the gold nanoclusters in future.

Contents
1 Introduction
2 Gold nanoclusters protected by phosphides
2.1 [Au5(dppmH)3(dppm)](NO3)2
2.2 [Au8(PR3)7](NO3)2
2.3 [Au9(PR3)8](BF4)3
2.4 Au10Cl3(PCy2Ph)6(NO3)(Cy=cyclohexyl)
2.5 Au11(PAr3)7X3(X:Cl or I)
2.6 [Au13(dppmH)6](NO3)4
2.7 [Au39 (PPh3)14Cl6]Cl2
2.8 Au55(PPh3)12Cl6
3 Gold nanoclusters protected by thiols
3.1 Au25(SCH2CH2Ph)18q (q= -1 or 0)
3.2 [Au25(PPh3)10(SCnH2n+1)5Cl2]2+ (n=2-18)
3.3 Au38(SC2H4Ph)24
3.4 Au102(p-MBA)44
4 Summary and outlook

CLC Number: 

[1] Belyakova O A, Slovokhotov Y L. Russ. Chem. Bull., 2003, 52: 2299-2327
[2] Homberger M, Simon U. Phil. Trans. R. Soc. A, 2010, 368: 1405-1453
[3] Turner M, Golovko V B, Vaughan O P H, Abdulkin P, Berenguer-Murcia A, Tikhov M S, Johnson B F G, Lambert R M. Nature, 2008, 454: 981-983
[4] Corma A, Serna P. Science, 2006, 313: 332-334
[5] Yang Y, Chen S. Nano Lett., 2003, 3: 75-79
[6] Valden M, Lai X, Goodman D W. Science, 1998, 281: 1647-1650
[7] Carrettin S, Guzman J, Corma A. Angew. Chem. Int. Ed., 2005, 44: 2242-2245
[8] Milone C, Ingoglia R, Pistone A, Neri G, Frusteri F, Galvagno S. J. Catal., 2004, 222: 348-356
[9] Zhu Y, Wu Z K, Gayathri C, Qian H F, Gil R R, Jin R C. J. Catal., 2010, 271: 155-160
[10] Zhu Y, Qian H, Zhu M, Jin R. Adv. Mater., 2010, 22: 1915-1920
[11] Liu Y M, Tsunoyama H, Akita T, Tsukuda T. Chem. Commun., 2010, 46: 550-552
[12] Zhu Y, Qian H F, Drake B A, Jin R C. Angew. Chem. Int. Ed., 2010, 49: 1295-1298
[13] Liu X, Li C, Xu J, Lv J, Zhu M, Guo Y, Cui S, Liu H, Wang S, Li Y. J. Phys. Chem. C, 2008, 112: 10778-10783
[14] Zheng J, Nicovich P R, Dickson R M. Annu. Rev. Phys. Chem., 2007, 58: 409-431
[15] Huang T, Murray R W. J. Phys. Chem. B, 2001, 105: 12498-12502
[16] Huang C C, Yang Z, Lee K H, Chang H T. Angew. Chem. Int. Ed., 2007, 46: 6824-6828
[17] Werts M H V, Lambert M, Bourgoin J P, Brust M. Nano Lett., 2002, 2: 43-47
[18] Liu S, Maoz R, Schmid G, Sagiv J. Nano Lett., 2002, 2: 1055-1060
[19] Schmid G, Liu Y P, Schumann M, Raschke T, Radehaus C. Nano Lett., 2001, 1: 405-407
[20] Templeton A C, Wuelfing M P, Murray R W. Acc. Chem. Res., 2000, 33: 27-36
[21] Bertino M F, Sun Z M, Zhang R, Wang L S. J. Phys. Chem. B, 2006, 110: 21416-21418
[22] Yanagimoto Y, Negishi Y, Fujihara H, Tsukuda T. J. Phys. Chem. B, 2006, 110: 11611-11614
[23] van der Velden J W A, Vollenbroek F A, Bour J J, Beurskens P I, Smits J M M, Bosman W P. Recl. J. R. Neth. Chem. Soc., 1981, 100: 148-152
[24] van der Velden J W A, Bour J J, Bosman W P, Noordik J H. J. Chem. Soc. Chem. Commun., 1981, 1218-1219
[25] Hall K P, Theoblad B R C, Gilmour D I, Mingos D M P, Welch A J. J. Chem. Soc. Chem. Commun., 1982, 528-530
[26] Wen F, Englert U, Gutrath B, Simon U. Eur. J. Inorg. Chem., 2008, 106-111
[27] Briant C E, Hall K P, Wheeler A C, Mingos D M P. J. Chem. Soc. Chem. Commun., 1984, 248-250
[28] Bellon P, Manassero M, Sansoni M. J. Chem. Soc. Dalton Trans., 1972, 1481-1487
[29] Bartlett P A, Bauer B, Singer S J. J. Am. Chem. Soc., 1978, 100: 5085-5089
[30] Bos W, Bour J J, Steggerda J J, Pignolet L H. Inorg. Chem., 1985, 24: 4298-4301
[31] Nunokawa K, Onaka S, Ito M, Horibe M, Yonezawa T, Nishihara H, Ozeki T, Chiba H, Watase S, Nakamoto M. J. Organomet. Chem., 2006, 691: 638-642
[32] Teo B K, Shi X, Zhang H. J. Am. Chem. Soc., 1992, 114: 2743-2745
[33] Aiken J D III, Finke R G. J. Mol. Catal. A: Chem., 1999, 145: 1-44
[34] Schmid G. Chem. Soc. Rev., 2008, 37: 1909-1930
[35] Brust M, Walker M, Bethell D, Schiffrin D J, Whyman R. J. Chem. Soc. Chem. Commun., 1994, 801-802
[36] Link S, Beeby A, FitzGerald S, El-Sayed M A, Schaaff T G, Whetten R L. J. Phys. Chem. B, 2002, 106: 3410-3415
[37] Negishi Y, Nobusada K, Tsukuda T. J. Am. Chem. Soc., 2005, 127: 5261-5270
[38] Negishi Y, Takasugi Y, Sato S, Yao H, Kimura K, Tsukuda T. J. Am. Chem. Soc., 2004, 126: 6518-6519
[39] Negishi Y, Chaki N K, Yukatsu S, Whetten R L, Tsukuda T. J. Am. Chem. Soc., 2007, 129: 11322-11323
[40] Choi J P, Fields-Zinna C A, Stiles R L, Balasubramanian R, Douglas A D, Crowe M C, Murray R W. J. Phys. Chem. C, 2010, 114: 15890-15896
[41] Jadzinsky P D, Calero G, Ackerson C J, Bushnell D A, Kornberg R D. Science, 2007, 318: 430-433
[42] Zhu M, Qian H, Jin R. J. Am. Chem. Soc., 2009, 131: 7220-7221
[43] Zhu M Z, Qian H F, Jin R C. J. Phys. Chem. Lett., 2010, 1: 1003-1007
[44] Zhu M Z, Aikens C M, Hollander F J, Schatz G C, Jin R C. J. Am. Chem. Soc., 2008, 130: 5883-5885
[45] Zhu M Z, Eckenhoff W T, Pintauer T, Jin R C. J. Phys. Chem. C, 2008, 112: 14221-14224
[46] Zhu M Z, Lanni E, Garg N, Bier M E, Jin R C. J. Am. Chem. Soc., 2008, 130: 1138-1139
[47] Wu Z K, Suhan J, Jin R C. J. Mater. Chem., 2009, 19: 622-626
[48] Zhu M Z, Aikens C M, Hendrich M P, Gupta R, Qian H F, Schatz G C, Jin R C. J. Am. Chem. Soc., 2009, 131: 2490-2492
[49] Qian H F, Eckenhoff W T, Zhu Y, Pintauer T, Jin R. J. Am. Chem. Soc., 2010, 132: 8280-8281
[50] Qian H F, Jin R C. Nano Lett., 2009, 9: 4083-4087
[51] Woehrle G H, Hutchison J E. Inorg. Chem., 2005, 44: 6149-6158
[52] Shichibu Y, Negishi Y, Watanabe T, Chaki N K, Kawaguchi H, Tsukuda T. J. Phys. Chem. C, 2007, 111: 7845-7847
[53] Balasubramanian R, Guo R, Mills A J, Murray R W. J. Am. Chem. Soc., 2005, 127: 8126-8132
[54] Teo B K, Zhang H. Coord. Chem. Rev., 1995, 143: 611-636
[55] Jin R. Nanoscale, 2010, 2: 343-362
[56] Heaven M W, Dass A, White P S, Holt K M, Murray R W. J. Am. Chem. Soc., 2008, 130: 3754-3755
[57] Price R C, Whetten R L. J. Am. Chem. Soc., 2005, 127: 13750-13751
[58] Teo B K, Zhang H. Inorg. Chem., 1991, 30: 3115-3116
[59] Lee S, Molina L M, López M J, Alonso J A, Hammer B, Lee B, Seifert S, Winans R E, Elam J W, Pellin M J, Vajda S. Angew. Chem. Int. Ed., 2009, 48: 1467-1471
[60] Herzing A A, Kiely C J, Carley A F, Landon P, Hutchings G J. Science, 2008, 321: 1331-1335
[61] Gao W, Chen X F, Li J C, Jiang Q. J. Phys. Chem. C, 2010, 114: 1148-1153

[1] Yafang Sun, Ziping Zhou, Tong Shu, Lisheng Qian, Lei Su, Xueji Zhang. Multicolor Luminescent Gold Nanoclusters: From Structure to Biosensing and Bioimaging [J]. Progress in Chemistry, 2021, 33(2): 179-187.
[2] Rui Wang, Guoan Tai, Zenghui Wu, Wei Shao, Chuang Hou, Jinqian Hao. Theoretical and Experimental Research of Boron Nanostructures [J]. Progress in Chemistry, 2019, 31(12): 1696-1711.
[3] Weina Fang, Shuang Lu, Lihua Wang, Chunhai Fan, Huajie Liu. Synthesis and Applications of Triangular Gold Nanoplates [J]. Progress in Chemistry, 2017, 29(5): 459-466.
[4] Wang Yun, Feng Anchao, Yuan Jinying. Application of Stimuli-Responsive Polymer in Catalyst Systems of Gold Nanoparticles [J]. Progress in Chemistry, 2016, 28(7): 1054-1061.
[5] Gong Dejun, Gao Guanbin, Zhang Mingxi, Sun Taolei. Chiral Gold Nanoclusters: Synthesis, Properties and Applications [J]. Progress in Chemistry, 2016, 28(2/3): 296-307.
[6] Lu Wensheng, Wang Haifei, Zhang Jianping, Jiang Long. Gold Nanorods: Synthesis, Growth Mechanism and Purification [J]. Progress in Chemistry, 2015, 27(7): 785-793.
[7] Tian Danbi, Zhang Wei, Tang Yan, Jiang Ling, Liu Jia, Hu Yi. Bioconjugate Probe for Enzyme Activity Based on the Gold Nanoparticles [J]. Progress in Chemistry, 2015, 27(2/3): 267-274.
[8] Zheng Yongpeng, Xu Jiaxi. Thorpe-Ingold Effect and Its Application in Cyclizations in Organic Chemistry [J]. Progress in Chemistry, 2014, 26(09): 1471-1491.
[9] Li Zhiguo, Zhang Lingling. Influence Factors on the Performance of DNA Self-Assembled Monolayers on Gold [J]. Progress in Chemistry, 2014, 26(05): 846-855.
[10] Ma Wenchan, Zhou Qiao, Zhang Yuecheng, Zhao Jiquan. Direct and Oxidatively Dehydrogenative Coupling of Alcohols with Amines to Amides [J]. Progress in Chemistry, 2014, 26(0203): 334-344.
[11] Dong Xu, Liu Xiaoyun, Zha Liusheng. Synthesis, Properties and Applications of Gold or Silver Nanoparticles Loaded Intelligent Hybrid Microgels [J]. Progress in Chemistry, 2013, 25(12): 2038-2052.
[12] Jiang Long, Wang Qingye, Cui Wenjuan. Influence of Gold Nanoparticles on the Cytotoxity and Cell Growth [J]. Progress in Chemistry, 2013, 25(10): 1631-1641.
[13] Yan Fei, Liu Xiangyang, Zhao Dongjiao, Bao Weixing, Dong Xiaoping, Xi Fengna*. Application of Fluorescent Gold Nanoclusters for the Determination of Small Molecules [J]. Progress in Chemistry, 2013, 25(05): 799-808.
[14] Ge Yujun, Chi Cheng, Wu Rong, Guo Xia, Zhang Qiao, Yang Jian. Gold Nanorods-Based Core-Shell Nanostructures: Synthesis, Characterization and Optical Properties [J]. Progress in Chemistry, 2012, 24(05): 776-783.
[15] Yang Qunfeng, Liu Jianyun, Chen Huaping, Wang Xianxiang, Huang Qianming, Shan Zhi. Preparation of Noble Metallic Nanoclusters and Its Application in Biological Detection [J]. Progress in Chemistry, 2011, 23(5): 880-892.