中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (10): 2038-2044 Previous Articles   Next Articles

Special Issue: 锂离子电池

• Review •

Li-Rich Layer-Structured Cathode Materials for Li-Ion Batteries

Wu Chengren1,2, Zhao Changchun1*, Wang Zhaoxiang2*, Chen Liquan2   

  1. 1. School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China;
    2. Laboratory for Solid State Ionics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • Received: Revised: Online: Published:
PDF ( 2419 ) Cited
Export

EndNote

Ris

BibTeX

Electrode materials are important building blocks of lithium ion batteries. The capacity of the anode material is usually more than 300 mAh/g while that of the cathode is still around 150 mAh/g. The capacity of the cathode materials has become a bottleneck to the improvement of the electrochemical performances of lithium ion battery. Li-rich layer-structured Li1+xA1-xO2 (A = Mn, Ni, Co, Ti, Zr, etc.) cathode materials caught the attention of the scientists in the past decade due to high reversible capacity (200 mAh/g or more). These materials can also be written as xLi2MO3·(1-x)LiM'O2 (M = Mn, Ti, Zr; M' = Mn, Ni, Co; 0≤x≤1). In this review, we introduce the synthesis methods, structure and the charge-discharge mechanism of this type of materials. More attention will be paid to the improvement to their electrochemical properties by surface (coating) and bulk (doping) modification. At the end of this review, the problems and prospects of the research on these cathode materials are commented.

Contents
1 Introduction
2 Structure of Li-rich layer-structured cathode materials
3 Synthesis of Li-rich layer-structured cathode materials
4 Charge-discharge mechanism
5 Surface and structural modification
5.1 Surface modification
5.2 Acidic treatment
5.3 Fluorine doping
5.4 Pre-cycling treatment
6 Prospects

CLC Number: 

[1] Li W, Currie J C. J. Electrochem. Soc., 1997, 68: 565-569
[2] Armstrong R A, Bruce P G. Nature, 1996, 381: 499-500
[3] Capitaine F, Gravereau P, Delmas C. Solid State Ionics, 1996, 89: 197-202
[4] Gummow R J, de Kock A, Thackeray M M. Solid State Ionics, 1994, 69: 59-67
[5] Ohzuku T, Kitagawa M, Hirai T. J. Electrochem. Soc., 1990, 137: 40-46
[6] Tarascon J M, Wang E, Shokoohi F K, McKinnon W R, Colson S. J. Electrochem. Soc., 1991, 138: 2859-2864
[7] Pahdi A K, Nanjundaswamy K S, Goodenough J B. J. Electrochem. Soc., 1997, 144: 1188-1194
[8] Strobel P, Lambert-Andron B. J. Solid State Chem., 1988, 75: 90-98
[9] Rossouw M H, Liles D C, Thackeray M M. J. Solid State Chem., 1993, 104: 464-466
[10] Johnson C S, Korte S D, Vaughey J T, Thackeray M M, Bofinger T E, Shao-Horn Y, Hackney S A. J. Power Sources, 1999, 81: 491-495
[11] Johnson C S, Thackeray M M. Proc. Electrochem. Soc., 2000, 36: 47-60
[12] Rossouw M H, Thackeray M M. US 5166012, 1992
[13] Thackeray M M, Rossouw M H, de Kock A, de la Harpe A P, Gummow R J, Pearce K, Liles D C. J. Power Sources, 1993, 43: 289-300
[14] Johnson C S, Dees D W, Mansuetto M F, Thackeray M M, Vissers D R, Argyriou D, Loong C K, Christensen L. J. Power Sources, 1997, 68: 570-577
[15] Kim J S, Johnson C S, Thackeray M M. Electrochem. Commun., 2002, 4: 205-209
[16] Yoon W S, Iannopollo S, Grey C P, Carlier D, Gorman J, Reed J, Ceder G. Electrochem. Solid-State Lett., 2004, 7: A167-A171
[17] Lu Z H, Chen Z H, Dahn J R. Chem. Mater., 2003, 15: 3214-3220
[18] Pan C J, Lee Y J, Ammundsen B, Grey C P. Chem. Mater., 2002, 14: 2289-2299
[19] Lei C H, Bareño J, Wen J G, Petrov I, Kang S H, Abraham D P. J. Power Sources, 2008, 178: 422-433
[20] Breger J, Meng Y S, Hinuma Y, Kumar S, Kang K, Shao-Horn Y, Ceder G, Grey C P. Chem. Mater., 2006, 18: 4768-4781
[21] Thackeray M M, Kang S H, Johnson C S, Vaughey J T, Benedek R, Hackney S A. J. Mater. Chem., 2007, 17: 3112-3125
[22] Kang S H, Kempgens P, Greenbaum S, Kropf A J, Amine K, Thackeray M M. J. Mater. Chem., 2007, 17: 2069-2077
[23] Kim J S, Johnson C S, Vaughey J T, Thackeray M M. Chem. Mater., 2004, 16: 1996-2006
[24] Armstrong A R, Holzapfel M, Novak P, Johnson C S, Kang S H, Thackeray M M, Bruce P G. J. Am. Chem. Soc., 2006, 128: 8694-8698
[25] Johnson C S, Li N C, Lefief C, Vaughey J T, Thackeray M M. Chem. Mater., 2008, 20: 6095-6106
[26] Meng Y S, Ceder G, Grey C P, Yoon W S, Jian M, Bréger J, Shao-Horn Y. Chem. Mater., 2005, 17: 2386-2394
[27] 黄可龙(Huang K L), 王兆翔(Wang Z X), 刘素琴(Liu S Q). 锂离子电池原理与关键技术(The Principle and Key Technology of Lithium Ion Batteries). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2008. 113
[28] Lu Z H, Dahn J R. J. Electrochem. Soc., 2002, 149: A1454-A1459
[29] Wu H M, Tu J P, Chen X T, Li Y, Zhao X B, Cao G S. J. Electroanal. Chem., 2006, 586: 180-183
[30] Zhang L Q, Muta T, Noguchi H, Wang X Q, Zhou M. J, Yoshio M, Power Sources, 2003, 117: 137-142
[31] Wu Y, Manthiram A. Solid State Ionics, 2009, 180: 50-56
[32] Wu Y, Murugan A V, Manthiram A. J. Electrochem. Soc., 2008, 155: A635-A641
[33] Wu Y, Manthiram A. Electrochem. Solid-State Lett., 2006, 9: A221-A224
[34] Liu J, Wang Q Y, Reeja-Jayan B, Manthiram A. Electrochem. Commun., 2010, 12: 750-753
[35] Liu J, Reeja-Jayan B, Manthiram A. J. Phys. Chem., 2010, 114: 9528-9533
[36] Liu J, Manthiram A. J. Mater. Chem., 2010, 20: 3961-3967
[37] Zheng J M, Li J, Zhang Z R, Guo X J, Yang Y. Solid State Ionics, 2008, 179: 1794-1799
[38] Zheng J M, Zhang Z R, Wu X B, Dong Z X, Zhu Z, Yang Y. J. Electrochem. Soc., 2008, 155: A775-A782
[39] 冯国星(Feng G X). 中国科学院研究生院博士学位论文(Doctoral Dissertation of Graduate School of Chinese Academy of Sciences), 2010
[40] Wang Q Y, Liu J, Murugan A V, Manthiram A. J. Mater. Chem., 2009, 19: 4965-4972
[41] Morita M, Fujisaki T, Yoshimoto N, Ishikawa M. Electrochim. Acta, 2001, 46: 1565-1569
[42] Ulihin A S, Slobodyuk A B, Uvarov N F, Kharlamova O A, Isupov V P, Kavun V Y. Solid State Ionics, 2008, 179: 1740-1744
[43] Armand M, Dalard F, Deroo D, Mouliom C. Solid State Ionics, 1985, 15: 205-210
[44] Ohzuku T, Sawai K, Hirai T. J. Electrochem. Soc., 1990, 137: 3004-3010
[45] Appapillai A T, Mansour A N, Cho J, Shao-Horn Y. Chem. Mater., 2007, 19: 5748-5757
[46] Kim J S, Johnson C S, Vaughey J T, Thackeray M M. J. Power Sources, 2006, 153: 258-264
[47] Kang S H, Johnson C S, Vaughey J T, Amine K, Thackeray M M. J. Electrochem. Soc., 2006, 153: A1186-A1192
[48] Paik Y, Grey C P, Johnson C S, Kim J S, Thackeray M M. Chem. Mater., 2002, 14: 5109-5115
[49] Tang W P, Kanoh H F, Yang X J, Ooi K. Chem. Mater., 2000, 12: 3271-3279
[50] Benedek R, Thackeray M M, Electrochem. Solid-State Lett., 2006, 9: A265-A267
[51] Kubo K, Arai S, Yamada S, Kanda M. J. Power Sources, 1999, 81: 599-603
[52] Naghash A R, Lee J Y, Electrochim. Acta, 2001, 46: 2293-2304
[53] Kang S H, Thackeray M M. J. Electrochem. Soc., 2008, 155: A269-A275
[54] Kang S H, Amine K. J. Power Sources, 2005, 146: 654-657
[55] Kubo K, Fujiwara M, Yamada S, Arai S, Kanda M. J. Power Sources, 1997, 68: 553-557
[56] Kumagai N, Kim J M, Tsuruta S, Kadoma Y, Ui K. Electrochimica Acta, 2008, 53: 5287-5293
[57] Ito A, Li D, Ohsawa Y, Sato Y. J. Power Sources, 2008, 183: 344-346
[58] Ito A, Li D, Sato Y, Arao M, Watanabe M, Hatano M, Horie H, Ohsawa Y. J. Power Sources, 2010, 195: 567-573

[1] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[2] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[3] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[4] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[5] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[6] Yiming Chen, Huiying Li, Peng Ni, Yan Fang, Haiqing Liu, Yunxiang Weng. Catechol Hydrogel as Wet Tissue Adhesive [J]. Progress in Chemistry, 2023, 35(4): 560-576.
[7] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[8] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[9] Xuexian Wu, Yan Zhang, Chunyi Ye, Zhibin Zhang, Jingli Luo, Xianzhu Fu. Surface Pretreatment of Polymer Electroless Plating for Electronic Applications [J]. Progress in Chemistry, 2023, 35(2): 233-246.
[10] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[11] Yanqin Lai, Zhenda Xie, Manlin Fu, Xuan Chen, Qi Zhou, Jin-Feng Hu. Construction and Application of 1,8-Naphthalimide-Based Multi-Analyte Fluorescent Probes [J]. Progress in Chemistry, 2022, 34(9): 2024-2034.
[12] Zonghan Xue, Nan Ma, Weigang Wang. Nitrated Mono-Aromatic Hydrocarbons in the Atmosphere [J]. Progress in Chemistry, 2022, 34(9): 2094-2107.
[13] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[14] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[15] Jin Zhou, Pengpeng Chen. Modification of 2D Nanomaterials and Their Applications in Environment Pollution Treatment [J]. Progress in Chemistry, 2022, 34(6): 1414-1430.