中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (10): 2031-2037 Previous Articles   Next Articles

• Review •

Absorption and Separation of SO2 by Ionic Liquids

Hou Yucui1, Ren Shuhang2, Wu Weize2*   

  1. 1. Department of Chemistry, Taiyuan Normal University, Taiyuan 030031, China;
    2. State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
  • Received: Revised: Online: Published:
PDF ( 1244 ) Cited
Export

EndNote

Ris

BibTeX

Room-temperature ionic liquids (ILs), which have excellent properties, such as extremely low vapor pressure, high thermal and chemical stability and tunable structures, are regarded as environmentally benign solvents. Due to their tunable structures and properties, ILs can be designed to endow with a high solvent power for SO2 absorption and separation, and they have been widely investigated in SO2 absorption and separation by many researchers. The paper briefly introduces the characters of ILs used for SO2 capture and separation from flue gas or mixed gas, the capacity of SO2 absorption in these ILs, the ways to enhance the absorption of SO2, and the mechanism of the absorption. Furthermore, the application prospect of the absorption by ILs is presented, and the existing problems and the further studies are discussed.

Contents
1 Introduction
2 Ionic liquids for absorption and separation of SO2 and their improvements
2.1 Guanidinium based ionic liquids
2.2 Hydroxyl ammonium based ionic liquids
2.3 Imidazolium and pyridinium based ionic iiquids
2.4 Quaternary ammonium based ionic liquids
2.5 Supported ionic liquids
2.6 Polymerized ionic liquids
3 Mechanism of SO2 absorption by ionic liquids
4 Effects of the components of flue gas on desulphurization by ionic liquids
5 Conclusions and outlook

CLC Number: 

[1] 谭鑫(Tan X), 钟儒刚(Zhong R G), 甄岩(Zhen Y), 佘远斌(She Y L), 张凡(Zhang F). 化工环保(Environmental Protection of Chemical Industry), 2003, 23: 322-328
[2] Ma X, Kaneko T, Tashimo T, Yoshida T, Kato K. Chemical Engineering Science, 2000, 55: 4643-4652
[3] 李汝雄(Li R X), 王建基(Wang J J). 化工进展(Chemical Industry and Engineering Progress), 2002, 21: 43-48
[4] Wilkes J S, Zaworotko M J. J. Chem. Soc. Chem. Commun., 1992, 965-967
[5] Zhao H, Xia S Q, Ma P S. J. Chem. Technol. Biotechnol., 2005, 80: 1089-1096
[6] Guo S, Du Z Y, Zhang S G, Li D M, Li Z P, Deng Y Q. Green Chem., 2006, 8: 296-300
[7] Anthony J L, Maginn E J, Brennecke J F. Journal of Physical Chemistry B, 2002, 106: 7315-7320
[8] Blanchard L A, Gu Z Y, Brennecke J F. J. Phys. Chem. B, 2001, 105: 2437-2444
[9] Bates E D, Mayton R D, Ntai L, Davis J H Jr. J. Am. Chem. Soc., 2002, 124: 926-927
[10] Yu G R, Zhang S J, Yao X Q, Zhang J M, Dong K, Dai W B, Mori R. Ind. Eng. Chem. Res., 2006, 45: 2875-2880
[11] Anthony J L, Anderson J L, Maginn E J, Brennecke J F. J. Phys. Chem. B, 2005, 109: 6366-6374
[12] Shiflett M B, Yokozeki A. Ind. Eng. Chem. Res., 2005, 44: 4453-4464
[13] Wu W Z, Han B X, Gao H X, Liu Z M, Jiang T, Huang J. Angew. Chem. Int. Ed., 2004, 43: 2415-2417
[14] Anderson J L, Dixon J K, Maginn E J, Brennecke J F. J. Phys. Chem. B, 2006, 110: 15059-15062
[15] Huang J, Riisager A, Wasserscheid P, Fehrmann R. Chem. Commun., 2006, 4027-4029
[16] Huang J, Riisager A, Berg R W, Fehrmann R J. Mol. Catal. A: Chem., 2008, 279: 170-176
[17] Wang Y, Pan H H, Li H R, Wang C M. J. Phys. Chem. B, 2007, 111: 10461-10467
[18] Wang Y, Wang C M, Zhang L Q, Li H R. Phys. Chem. Chem. Phys., 2008, 10: 5976-5982
[19] Prasad B R, Senapati S. J. Phys. Chem. B, 2009, 113: 4739-4743
[20] Yuan X L, Zhang S J, Lu X M. J. Chem. Eng. Data, 2007, 52: 596-599
[21] Gao H X, Han B X, Li J C, Jiang T, Liu Z M, Wu W Z, Chang Y H, Zhang J M. Syn. Commun., 2004, 34: 3083-3089
[22] Lee K Y, Gong G T, Song K H, Kim H, Jung K, Kim C S. Inter. J. Hydrogen Energy, 2008, 33: 6031-6036
[23] Yokozeki A, Shiflett M B. Energy Fuels, 2009, 23: 4701-4708
[24] Shiflett M B, Yokozeki A. Energy Fuels, 2010, 24: 1001-1008
[25] Guo B, Duan E H, Ren A L, Wang Y, Liu H Y. J. Chem. Eng. Data, 2010, 55: 1398-1401
[26] Zhang Z M, Wu L B, Dong J, Li B G., Zhu S P. Ind. Eng. Chem. Res., 2009, 48: 2142-2148
[27] Jiang Y Y, Wu Y T, Wang W T, Li L, Zhou Z, Zhang Z B. Chinese J. Chem. Eng., 2009, 17: 594-601
[28] Luis P, Neves L A, Afonso C A M, Coelhoso I M, Crespo J G, Garea A, Irabien A. Desalination, 2009, 245(1/3): 485-493
[29] Wu L B, An D, Dong J, Zhang Z M, Li B G, Zhu S P. Macromol. Rapid Commun., 2006, 27: 1949-1954
[30] An D, Wu L B, Li B G, Zhu S P. Macromolecules, 2007, 40: 3388-3393
[31] 邢旭伟(Xing X W), 姚淑娟(Yao S J), 周成冈(Zhou C G), 古桂芬(Gu G F), 吴金平(Wu J P). 武汉大学学报(理学版)(J. Wuhan Univ. (Nat. Sci. Ed. )), 2008, 54: 162-166
[32] Shiflett M B, Yokozeki A. Ind. Eng. Chem. Res., 2010, 49: 1370-1377
[33] Ren S H, Hou Y C, Wu W Z, Liu Q Y, Xiao Y F, Chen X T. J. Phys. Chem. B, 2010, 114: 2175-2179
[34] Ren S H, Hou Y C, Wu W Z, Chen X T, Fan J L, Zhang J W. Ind. Eng. Chem. Res., 2009, 48: 4928-4932

[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[3] Yiming Chen, Huiying Li, Peng Ni, Yan Fang, Haiqing Liu, Yunxiang Weng. Catechol Hydrogel as Wet Tissue Adhesive [J]. Progress in Chemistry, 2023, 35(4): 560-576.
[4] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[5] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[6] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[7] Yanqin Lai, Zhenda Xie, Manlin Fu, Xuan Chen, Qi Zhou, Jin-Feng Hu. Construction and Application of 1,8-Naphthalimide-Based Multi-Analyte Fluorescent Probes [J]. Progress in Chemistry, 2022, 34(9): 2024-2034.
[8] Zonghan Xue, Nan Ma, Weigang Wang. Nitrated Mono-Aromatic Hydrocarbons in the Atmosphere [J]. Progress in Chemistry, 2022, 34(9): 2094-2107.
[9] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[10] Muya Zhang, Jiaqi Liu, Wang Chen, Liqiang Wang, Jie Chen, Yi Liang. The Mechanism of Protein Condensation in Neurodegenerative Diseases [J]. Progress in Chemistry, 2022, 34(7): 1619-1625.
[11] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[12] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[13] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[14] Meirong Li, Chenliu Tang, Weixian Zhang, Lan Ling. Performance and Mechanism of Aqueous Arsenic Removal with Nanoscale Zero-Valent Iron [J]. Progress in Chemistry, 2022, 34(4): 846-856.
[15] Fei Wu, Wei Ren, Cheng Cheng, Yan Wang, Heng Lin, Hui Zhang. Biochar-Based Advanced Oxidation Processes for the Degradation of Organic Contaminants in Water [J]. Progress in Chemistry, 2022, 34(4): 992-1010.