中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (0203): 589-594 Previous Articles   Next Articles

• Invited Article •

Hybrid Supercapacitors Based on Intercalation Compounds as Positive Electrodes

Wen Zubiao1,2, Tian Shu1, Qu Qunting1, Wu Yuping1*   

  1. 1. Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, China;
    2. College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
  • Received: Revised: Online: Published:
PDF ( 1590 ) Cited
Export

EndNote

Ris

BibTeX

In this paper a short introduction to the latest development on hybrid supercapacitors based on intercalation compounds is presented, and the up-to-date research results of our laboratory on the influence of aqueous electrolytes, electrode materials (activated carbons, MnO2, V2O5, LiCoO2, LiMn2O4, NaxMnO2 and KxMnO2) and some supercapacitors are mainly expounded. It should be noted that the hybrid supercapacitors based on intercalation compounds containing alkali metal elements presents great promise for applications due to the following reasons: (1) the electrolytes are different from those of other supercapacitors and they do not need to provide anions and cations for positive and negative electrodes, (2) the electrode materials have high capacitance, high power density and excellent cycling behavior. For example, in the case of amorphous nano MnO2, after 23 000 full cycles, the capacitance retention is above 94%. As to the hybrid supercapacitor of AC//LiMn2O4 nanorod, its energy density based on the active electrode materials can be above 50Wh/kg with excellent power characteristics. Finally, some future directions are pointed out especially some non-carbon based negative electrode materials with capacitive and redox behaviors.

CLC Number: 

[1] 吴宇平(Wu Y P), 张汉平(Zhang H P), 吴锋(Wu F). 绿色电源材料(Materials for Green Power Sources). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2008
[2] Conway B E. Electrochemical Capacitors: Scientific Fundamentals and Technological Applications, New York: Kluwer Academic/Plenum Publishers, 1999
[3] Li W, Dalin J R, Wainwright D. Science, 1994, 264: 115
[4] Wang G J, Fu L J, Zhao N H, Yang L C, Wu Y P, Wu H Q. Angew. Chem. Int. Ed., 2007, 46: 295-297
[5] Wang G J, Zhang H P, Fu L J, Wang B, Wu Y P. Electrochem. Commun., 2007, 9: 1873-1876
[6] Chu A, Braatz P. J. Power Sources, 2002, 112(1): 236-246
[7] Service R F. Science, 2006, 313: 902
[8] Ktz R, Carlen M. Electrochim. Acta, 2000, 45(15/16): 2483-2498
[9] 田志宏(Tian Z H), 赵海雷(Zhao H L), 李钥(Li Y), 王治峰(Wang Z F), 仇卫华(Qiu W H). 电池(Battery Bimonthly), 2006, 36: 460-471
[10] 徐睿(Xu R), 唐子龙(Tang Z L), 李俊荣(Li J R), 张中太(Zhang Z T). 化学进展(Progress in Chemistry), 2009, 21: 235-243
[11] Burke A. J. Power Sources, 2000, 91: 37-50
[12] Razoumov S, Klementov A, Litvinenko S, Beliakov A. US 6222723B1, 2001
[13] Amatucci G G, Badway F, Du Pasquier A, Zheng T. J. Electrochem. Soc., 2001, 148: A930-A939
[14] Pell W G, Conway B E, J. Power Sources, 1996, 63: 255-266
[15] Ilcho S, Lee S B. Acc. Chem. Res., 2008, 41: 699-707
[16] Qu Q T, Wang B, Yang L C, Shi Y, Tian S, Wu Y P. Electrochem. Commun., 2008, 10: 1652-1655
[17] Qu Q T, Zhang P, Wang B, Chen Y H, Tian S, Wu Y P, Holze R. J. Phys. Chem. C, 2009, 113: 14020-14027
[18] Pandolfo A G, Hollenkamp A F. J. Power Sources, 2006, 157(1): 11-27
[19] Wen Z B, Qu Q T, Gao Q, Zheng X W, Hu Z H, Wu Y P, Liu Y F, Wang X J. Electrochem. Commun., 2009, 11: 715-718
[20] Andreas H A, Conway B E, Electrochim. Acta, 2006, 51: 6510-6520
[21] Wang D W, Li F, Liu M, Lu G Q, Cheng H M. Angew. Chem. Int. Ed., 2008, 47: 373-376
[22] Brousse T, Toupin M, Bélanger D. J. Electrochem. Soc., 2004, 151: A614-A622
[23] Qu Q T, Shi Y, Li L L, Guo W L, Wu Y P, Zhang H P, Guan S Y, Holze R. Electrochem. Commun., 2009, 11: 1325-1328
[24] Park J H, Park O O, Shin K H, Jin C S, Kim J H. Electrochem. Solid-State Lett., 2002, 5: H7
[25] Tang W, Liu L L, Tian S, Li L, Yue Y B, Wu Y P, Guan S Y, Zhu K. Electrochem. Commun., 2010, 12: 1254-1256
[26] Qu Q T, Fu L J, Zhan X Y, Samuelis D, Maier J, Li L, Tian S, Li Z H, Wu Y P. Engergy Environ. Sci., 2011, 4: accepted.
[27] Wang Y G, Xia Y Y. Electrochem. Commun., 2005, 7(11): 1138-1142
[28] Qu Q T, Shi Y, Tian S, Chen Y H, Wu Y P, Holze R. J. Power Sources, 2009, 194: 1222-1225
[29] Qu Q T, Li L, Tian S, Guo W L, Wu Y P, Holze R. J. Power Sources, 2010, 195: 2789-2794
[30] Ruffo R, Wessells C, Huggins R A, Cui Y. Electrochem. Commun., 2009, 11: 247-249

[1] Shuai Li, Na Zhu, Yangjian Cheng, Di Chen. Performance of Resistance to Sulfur Oxide and Regeneration over Copper-Based Small-Pore Zeolites Catalysts for the Selective Catalytic Reduction of NOx with NH3 [J]. Progress in Chemistry, 2023, 35(5): 771-779.
[2] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[3] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[4] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[5] Qi Huang, Zhenyu Xing. Advances in Lithium Selenium Batteries [J]. Progress in Chemistry, 2022, 34(11): 2517-2539.
[6] Benzhan Zhu, Jing Zhang, Miao Tang, Chunhua Huang, Jie Shao. Mechanism Investigation on DNA Damage Induced by Carcinogenic Haloquinoid Disinfection Byproducts [J]. Progress in Chemistry, 2022, 34(1): 227-236.
[7] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[8] Lianxin Li, Ranran Cao, Pengyi Zhang. Catalytic Decomposition of Gaseous Ozone at Room Temperature [J]. Progress in Chemistry, 2021, 33(7): 1188-1200.
[9] Xiaolin Liu, Xiya Yang, Hailong Wang, Kang Wang, Jianzhuang Jiang. Organic Compounds as Electrode Materials for Rechargeable Devices [J]. Progress in Chemistry, 2021, 33(5): 818-837.
[10] Qi Yang, Nanping Deng, Bowen Cheng, Weimin Kang. Gel Polymer Electrolytes in Lithium Batteries [J]. Progress in Chemistry, 2021, 33(12): 2270-2282.
[11] Yi Zhang, Meng Zhang, Yifan Tong, Haixia Cui, Pandeng Hu, Weiwei Huang. Application of Multi-Carbonyl Covalent Organic Frameworks in Secondary Batteries [J]. Progress in Chemistry, 2021, 33(11): 2024-2032.
[12] Dong Li, Yuying Zheng, Haoxiong Nan, Yanxiong Fang, Quanbing Liu, Qiang Zhang. Electrolyte for Solid Lithium-Sulfur Batteries with High Safety and High Specific Energy [J]. Progress in Chemistry, 2020, 32(7): 1003-1014.
[13] Jiamiao Chen, Jingwen Xiong, Shaomin Ji, Yanping Huo, Jingwei Zhao, Liang Liang. All Solid Polymer Electrolytes for Lithium Batteries [J]. Progress in Chemistry, 2020, 32(4): 481-496.
[14] Jinglun Wang, Qin Ran, Chongyu Han, Zilong Tang, Qiduo Chen, Xueying Qin. Organosilicon Functionalized Electrolytes for Lithium-Ion Batteries [J]. Progress in Chemistry, 2020, 32(4): 467-480.
[15] Lei Zhu, Jianan Wang, Jianwei Liu, Ling Wang, Wei Yan. Applications of Electrospun One-Dimensional Nanomaterials in Gas Sensors [J]. Progress in Chemistry, 2020, 32(2/3): 344-360.