中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (0203): 557-568 Previous Articles   Next Articles

• Invited Article •

Solid State Electrolytes for Dye-Sensitized Solar Cells

Qin Da, Guo Xiaozhi, Sun Huicheng, Luo Yanhong, Meng Qingbo*, Li Dongmei*   

  1. Renewable Energy Laboratory, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • Received: Revised: Online: Published:
PDF ( 2922 ) Cited
Export

EndNote

Ris

BibTeX

Dye-sensitized solar cells (DSCs) are promising alternative to conventional Si-based solar cells due to their low cost, easy fabrication and relatively high conversion efficiency. In the DSC, the electrolyte plays an important role in the regeneration of dye molecules and the charge transportation. Although the DSCs based on the liquid electrolyte can present much better photovoltaic performance, the disadvantages of the liquid electrolytes ( i.e. volatility and easy leakage) are supposed to reduce the long-term stability. Therefore, the development of (quasi) solid-state electrolytes is necessary and imperative. In this paper, the recent progress on the solid-state electrolytes and the prospects are given.

CLC Number: 

[1] ORegan B, Grtzel M. Nature, 1991, 353(6346): 737-740
[2] Chiba Y, Islam A, Watanabe Y, Komiya R, Koide N, Han L. Jpn. J. Appl. Phys., 2006, 45(25): L638-L640
[3] Green M A, Emery K, Hishikawa Y, Warta W. Prog. Photovolt: Res. Appl., 2010, 18(5): 346-352
[4] 于哲勋(Yu Z X), 李冬梅(Li D M), 秦达(Qin D), 孙惠成(Sun H C), 张一多(Zhang Y D), 罗艳红(Luo Y H), 孟庆波(Meng Q B). 中国材料进展(Materials China), 2010, 28(7/8): 8-15
[5] 李文欣(Li W X), 胡林华(Hu L H), 戴松元(Dai S Y). 中国材料进展(Materials China),2010, 28(7/8): 20-25
[6] 郭磊(Guo L), 潘旭(Pan X), 戴松元(Dai S Y). 化学进展(Prog. Chem.), 2008, 20(10): 1595-1605
[7] Wang Y. Sol. Energy Mater. Sol. Cells, 2009, 93(8): 1167-1175
[8] 盛显良(Sheng X L), 刘娜仁(Liu N R), 翟锦(Zhai J), 安丽平(An L P). 化学进展(Prog. Chem.), 2008, 21(9): 1969-1979
[9] Pagliaro M, Palmisano G, Ciriminna R, Loddo V. Energy Environ. Sci., 2009, 2(8): 838-844
[10] Liu X, Luo Y, Li H, Fan Y, Yu Z, Lin Y, Chen L, Meng Q. Chem. Commun., 2007, 2847-2849
[11] Murakami T N, Grtzel M. Inorg. Chim. Acta, 2008, 361(3): 572-580
[12] Papageorgiou N. Coordin. Chem. Rev., 2004, 248(13/14): 1421-1446
[13] Huang X, Zhang Y, Sun H, Li D, Luo Y, Meng Q. J. Renewable Sustainable Energy, 2009, 1: art. no. 063107
[14] Nazeeruddin M K, Kay A, Rodicio I, Humpbry-Baker R, Müller E, Liska P, Vlachopoulos N, Grtzel M. J. Am. Chem. Soc., 1993, 115(14): 6382-6390
[15] Grtzel M. Inorg. Chem., 2005, 44(20): 6841-6851
[16] Hagfeldt A, Grtzel M. Acc. Chem. Res., 2000, 33(5): 269-277
[17] Trupke T, Würfel P, Uhlendorf I. J. Phys. Chem. B, 2000, 104(48): 11484-11488
[18] Kamat P V. J. Phys. Chem. C, 2008, 112(48): 18737-18753
[19] Lee Y L, Lo Y S. Adv. Funct. Mater., 2009, 19(4): 604-609
[20] Zhang Q, Zhang Y, Huang S, Huang X, Luo Y, Meng Q, Li D. Electrochem. Commun., 2010, 12(2): 327-330
[21] Wang Q, Ito S, Grtzel M, Fabregat-Santiago F, Mora-Seró I, Bisquert J, Bessho T, Imai H. J. Phys. Chem. B, 2006, 110(50): 25210-25221
[22] Luo Y, Li D, Meng Q. Adv. Mater., 2009, 21(45): 4647-4651
[23] Huang Z, Liu X, Li K, Li D, Luo Y, Li H, Song W, Chen L, Meng Q. Electrochem. Commun., 2007, 9(4): 596-598
[24] Sun H, Luo Y, Zhang Y, Li D, Yu Z, Li K, Meng Q. J. Phys. Chem. C, 2010, 114(26): 11673-11679
[25] Grtzel M. Nature, 2001, 414(6861): 338-344
[26] Sapp S A, Elliott C M, Contado C, Caramori S, Bignozzi C A. J. Am. Chem. Soc., 2002, 124(37): 11215-11222
[27] Wang P, Zakeeruddin S M, Moser J E, Humphry-Baker R, Grtzel M. J. Am. Chem. Soc., 2004, 126(23): 7164-7165
[28] Zhang Z, Chen P, Murakami T N, Zakeeruddin S M, Grtzel M. Adv. Funct. Mater., 2008, 18(2): 341-346
[29] Li D, Li H, Luo Y, Li K, Meng Q, Armand M, Chen L. Adv. Funct. Mater., 2010, 20(19): 3358-3365
[30] Wang M, Chamberland N, Breau L, Moser J E, Humphry-Baker R, Marsan B, Zakeeruddin S M, Grtzel M. Nature Chem., 2010, 2(5): 385-389
[31] Yanagida S, Yu Y, Manseki K. Acc. Chem. Res., 2009, 42(11): 1827-1838
[32] Sirimanne P M, Perera V P S. Phys. Stat. Sol. (b), 2008, 245( 9): 1828-1833
[33] Tennakone K, Kumara G R R A, Kottegoda I R M, Wijayantha K G U, Perera V P S. J. Phys. D: Appl. Phys., 1998, 31(12): 1492-1496
[34] Tennakone K, Senadeera G K R, de Silva D B R A, Kottegoda I R M. Appl. Phys. Lett., 2000, 77(15): 2367-2369
[35] Tennakone K, Kumara G R R A, Kumarasinghe A R, Wijayantha K G U, Sirimanne P M. Semicond. Sci. Tech., 1995, 10 (12): 1689-1693
[36] ORegan B, Schwartz D T, Zakeeruddin S M, Grtzel M. Adv. Mater., 2000, 12(17): 1263-1267
[37] ORegan B C, Lenzmann F. J. Phys. Chem. B, 2004, 108(14): 4342-4350
[38] Kumara G R A, Konno A, Shiratsuchi K, Tsukahara J, Tennakone K. Chem. Mater., 2002, 14(3): 954-955
[39] Kumara G R A, Kaneko S, Okuya M, Tennakone K. Langmuir, 2002, 18(26): 10493-10495
[40] Perera V P S, Senevirathna M K I, Pitigala P K D D P, Tennakone K. Sol. Energy Mater. Sol. Cells, 2005, 86(3): 443-450
[41] Kumara G R A, Okuya M, Murakami K, Kaneko S, Jayaweera V V, Tennakone K. J. Photochem. Photobio. A, 2004, 164(1/3): 183-185
[42] ORegan B C, Scully S, Mayer A C, Palomares E, Durrant J. J. Phys. Chem. B, 2005, 109(10): 4616-4623
[43] Bandara J, Tennakone K. J. Colloid Interface Sci., 2001, 236(2): 375-378
[44] Meng Q B, Takahashi K, Zhang X T, Sutanto I, Rao T N, Sato O, Fujishima A. Langmuir, 2003, 19(9): 3572-3574
[45] Rusop M, Shirata T, Sirimanne P M, Soga T, Jimbo T, Umeno M. Appl. Surf. Sci., 2006, 252(20): 7389-7396
[46] Kumara G R R A, Konno A, Senadeera G K R, Jayaweera P V V, de Silva D B R A, Tennakone K. Sol. Energy Mater. Sol. Cells, 2001, 69(2): 195-199
[47] Perera V P S, Pitigala P K D D P, Jayaweera P V V, Bandaranayake K M P, Tennakone K. J. Phys. Chem. B, 2003, 107(50): 13758-13761
[48] Perera V P S, Pitigala P K D D P, Senevirathne M K I, Tennakone K. Sol. Energy Mater. Sol. Cells, 2005, 85(1): 91-98
[49] Kumara G R A, Kaneko S, Okuya M, Onwona-Agyeman B, Konno A, Tennakone K. Sol. Energy Mater. Sol. Cells, 2006, 90(9): 1220-1226
[50] Premalal E V A, Kumara G R R A, Rajapakse R M G, Shimomura M, Murakami K, Konno A. Chem. Commun., 2010, 46(19): 3360-3362
[51] Bach U, Lupo D, Comte P, Moser J E, Weissrtel F, Salbeck J, Spreitzer H, Grtzel M. Nature, 1998, 395(6702): 583-585
[52] Boucharef M, Bin C D, Boumaza M S, Colas M, Snaith H J, Ratier B, Bouclé J. Nanotechnology, 2010, 21(20): art. no. 205203
[53] Docampo P, Guldin S, Stefik M, Tiwana P, Orilall M C, Hüttner S, Sai H, Wiesner U, Steiner U, Snaith H J. Adv. Funct. Mater., 2010, 20(11): 1787-1796
[54] Li T C, Góes M S, Fabregat-Santiago F, Bisquert J, Bueno P R, Prasittichai C, Hupp J T, Marks T J. J. Phys. Chem. C, 2009, 113(42): 18385-18390
[55] Chen P, Yum J H, De Angelis F, Mosconi E, Fantacci S, Moon S J, Baker R H, Ko J, Nazeeruddin M K, Grtzel M. Nano Lett., 2009, 9(6): 2487-2492
[56] Snaith H J, Petrozza A, Ito S, Miura H, Grtzel M. Adv. Funct. Mater., 2009, 19(11): 1810-1818
[57] Snaith H J, Moule A J, Klein C, Meerholz K, Friend R H, Grtzel M. Nano Lett., 2007, 7(11): 3372-3376
[58] Lee H J, Leventis H C, Moon S J, Chen P, Ito S, Haque S A, Torres T, Nüesch F, Geiger T, Zakeeruddin S M, Grtzel M, Nazeeruddin M K. Adv. Funct. Mater., 2009, 19(17): 2735-2742
[59] Kirchmeyer S, Reuter K. J. Mater. Chem., 2005, 15(21): 2077-2088
[60] Saito Y, Kubo W, Kitamura T, Wada Y, Yanagida S. J. Photochem. Photobio. A, 2004, 164(1/3): 153-157
[61] Sakurai S, Jiang H Q, Takahashi M, Kobayashi K. Electrochim. Acta, 2009, 54(23): 5463-5469
[62] Saito Y, Kitamura T, Wada Y, Yanagida S. Synth. Met., 2002, 131(1/3): 185-187
[63] Saito Y, Fukuri N, Senadeera R, Kitamura T, Wada Y, Yanagida S. Electrochem. Commun., 2004, 6(1): 71-74
[64] Senadeera R, Fukuri N, Saito Y, Kitamura T, Wada Y, Yanagida S. Chem. Commun., 2005, (17): 2259-2261
[65] Xia J, Masaki N, Lira-Cantu M, Kim Y, Jiang K, Yanagida S. J. Am. Chem. Soc., 2008, 130(4): 1258-1263
[66] Liu X, Zhang W, Uchida S, Cai L, Liu B, Ramakrishna S. Adv. Mater., 2010, 22(20): E150-E155
[67] Tan S, Zhai J, Wan M, Meng Q, Li Y, Jiang L, Zhu D. J. Phys. Chem. B, 2004, 108(48): 18693-18697
[68] Cervini R, Cheng Y, Simon G. J. Phys. D: Appl. Phys., 2004, 37(1): 13-20
[69] Wang Y, Yang K, Kim S C, Nagarajan R, Samuelson L A, Kumar J. Chem. Mater., 2006, 18(18): 4215-4217
[70] Wang H X, Xue B F, Hu Y S, Wang Z X, Meng Q B, Huang X J, Chen L Q. Electrochem. Solid State Lett., 2004, 7(10): A302-A305
[71] Wang H, Wang Z, Xue B, Meng Q, Huang X, Chen L. Chem. Commun., 2004, (19): 2186-2187
[72] Shi S, Xu L, Ouyang C, Wang Z, Chen L. Ionics, 2006, 12(6): 343-347
[73] Wang H, Li H, Xue B, Wang Z, Meng Q, Chen L. J. Am. Chem. Soc., 2005, 127(17): 6394-6401
[74] Wang H, Liu X, Wang Z, Li H, Li D, Meng Q, Chen L. J. Phys. Chem. B, 2006, 110(12): 5970-5974
[75] Xue B, Wang H, Hu Y, Li H, Wang Z, Meng Q, Huang X, Chen L, Sato O, Fujishima A. C. R. Chimie, 2006, 9(5/6): 627-630
[76] An H, Xue B, Li D, Li H, Meng Q, Guo L, Chen L. Electrochem. Commun., 2006, 8(1): 170-172
[77] Yu Z, Li H, Li K, Qin D, Deng M, Li D, Luo Y, Meng Q, Chen L. Electrochim. Acta, 2010, 55(3): 895-902
[78] Nogueira A F, Longo C, De Paoli M A. Coordin. Chem. Rev., 2004, 248(13/14): 1455-1468
[79] Katsaros G, Stergiopoulos T, Arabatzis I M, Papadokostaki K G, Falaras P. J. Photochem. Photobio. A, 2002, 149(1/3): 191-198
[80] Stergiopoulos T, Arabatzis I M, Katsaros G, Falaras P. Nano Lett., 2002, 2(11): 1259-1261
[81] Kim J H, Kang M S, Kim Y J, Won J, Park N G, Kang Y S. Chem. Commun., 2004, (14): 1662-1663
[82] Singh P K, Kim K W, Rhee H W. Electrochem. Commun., 2009, 11(6): 1247-1250
[83] Akhtar M S, Park J G, Lee H C, Lee S K, Yang O B. Electrochim. Acta, 2010, 55(7): 2418-2423
[84] Li Q, Wu J, Tang Q, Lan Z, Li P, Zhang T. Polym. Compos., 2009, 30(11): 1687-1692
[85] Han H, Liu W, Zhang J, Zhao X Z. Adv. Funct. Mater., 2005, 15(12): 1940-1944
[86] Kang M S, Kim Y J, Won J, Kang Y S. Chem. Commun., 2005, (21): 2686-2688
[87] Kang M-S, Kim J H, Won J, Kang Y S. J. Phys. Chem. C, 2007, 111(13): 5222-5228
[88] Lee J Y, Bhattacharya B, Kim D W, Park J K. J. Phys. Chem. C, 2008, 112(32): 12576-12582
[89] Bang S Y, Lee K J, Koh J H, Kang M S, Kang Y S, Kim J H. Ionics, 2008, 14(2): 143-148
[90] Zhou Y, Xiang W, Chen S, Fang S, Zhou X, Zhang J, Lin Y. Electrochim. Acta, 2009, 54(26): 6645-6650
[91] Zhou Y, Xiang W, Chen S, Fang S, Zhou X, Zhang J, Lin Y. Chem. Commun., 2009, (26): 3895-3897
[92] Rika, Ahmad A, Rahman M Y A, Salleh M M. Physica B, 2009, 404(8/11): 1359-1361
[93] Kim J H, Kang M S, Kim Y J, Won J, Kang Y S. Solid State Ion., 2005, 176(5/6): 579-584
[94] Wu J, Hao S, Lan Z, Lin J, Huang M, Huang Y, Li P, Yin S, Sato T. J. Am. Chem. Soc., 2008, 130(35): 11568-11569
[95] Xiang W, Zhou Y, Yin X, Zhou X, Fang S, Lin Y. Electrochim. Acta, 2009, 54(17): 4186-4191
[96] Jeon L S, Kim S Y, Kim S J, Lee Y G, Kang M S, Kang Y S. J. Photochem. Photobio. A, 2010, 212(2/3): 88-93
[97] Sangeetha N M, Maitra U. Chem. Soc. Rev., 2005, 34(10): 821-836
[98] Kubo W, Kitamura T, Hanabusa K, Wada Y, Yanagida S. Chem. Commun., 2002, (4): 374-375
[99] Kubo W, Kambe S, Nakade S, Kitamura T, Hanabusa K, Wada Y, Yanagida S. J. Phys. Chem. B, 2003, 107(18): 4374-4381
[100] Mohmeyer N, Wang P, Schmidt H W, Zakeeruddin S M, Grtzel M. J. Mater. Chem., 2004, 14(12): 1905-1909
[101] Mohmeyer N, Kuang D, Wang P, Schmidt H W, Zakeeruddin S M, Grtzel M. J. Mater. Chem., 2006, 16(29): 2978-2983
[102] Yu Z. Doctoral Dissevtation of Institute of Physics, Chinese Academy of Sciences, 2010
[103] Huo Z, Dai S, Zhang C, Kong F, Fang X, Guo L, Liu W, Hu L, Pan X, Wang K. J. Phys. Chem. B, 2008, 112(41): 12927-12933
[104] Huo Z, Zhang C, Fang X, Cai M, Dai S, Wang K. J. Power Sources, 2010, 195(13): 4384-4390
[105] Li B, Wang L, Kang B, Wang P, Qiu Y. Sol. Energy Mater. Sol. Cells, 2006, 90(5): 549-573
[106] Wu J, Lan Z, Lin J, Huang M, Hao S, Sato T, Yin S. Adv. Mater., 2007, 19(22): 4006-4011
[107] Yang H, Ileperuma O A, Shimomura M, Murakami K. Sol. Energy Mater. Sol. Cells, 2009, 93(6/7): 1083-1086
[108] Park J H, Nho Y C, Kang M G. J. Photochem. Photobio. A, 2009, 203(2/3): 151-154
[109] Lee S Y, Yoo B, Lim M K, Lee T K, Priya A R S, Kim K J. Langmuir, 2010, 26(9): 6638-6642
[110] Lai Y H, Chiu C W, Chen J G, Wang C C, Lin J J, Lin K F, Ho K C. Sol. Energy Mater. Sol. Cells, 2009, 93(10): 1860-1864
[111] Lee K M, Suryanarayanan V, Ho K C. J. Photochem. Photobio. A, 2009, 207(2/3): 224-230
[112] Gao R, Wang L, Ma B, Zhan C, Qiu Y. Langmuir, 2010, 26(4): 2460-2465
[113] Sharma G D, Suresh P, Mikroyannidis J A. Electrochim. Acta, 2010, 55(7): 2368-2372
[114] Kim J J, Choi H, Lee J W, Kang M S, Song K, Kang S O, Ko J. J. Mater. Chem., 2008, 18(43): 5223-5229
[115] Shi J, Peng S, Pei J, Liang Y, Cheng F, Chen J. ACS Appl. Mater. Interfaces, 2009, 1(4): 944-950
[116] Xue B, Fu Z, Li H, Liu X, Cheng S, Yao J, Li D, Chen L, Meng Q. J. Am. Chem. Soc., 2006, 128(27): 8720-8721
[117] Qin D, Li D, Yu Z, Luo Y, Meng Q. Electrochem. Solid State Lett., 2010, 13(3): B11-B13
[118] Yu Z, Zhang Q, Qin D, Luo Y, Li D, Shen Q, Toyoda T, Meng Q. Electrochem. Commun., 2010, 12: 1776-1779
[119] Papageorgiou N, Athanassov Y, Armand M, Bonhte P, Pettersson H, Azam A, Grtzel M. J. Electrochem. Soc., 1996, 143(10): 3099-3108
[120] Zakeeruddin S M, Grtzel M. Adv. Funct. Mater., 2009, 19(14): 2187-2202
[121] Freitas F S, de Freitas J N, Ito B I, De Paoli M A, Nogueira A F. ACS Appl. Mater. Interfaces, 2009, 1(12): 2870-2877
[122] Singh P K, Bhattacharya B, Nagarale R K, Pandey S P, Kim K W, Rhee H W. Synth. Met., 2010, 160(9/10): 950-954
[123] Singh P K, Kim K W, Rhee H W. Synth. Met., 2009, 159(15/16): 1538-1541
[124] Wang P, Zakeeruddin S M, Comte P, Exnar I, Grtzel M. J. Am. Chem. Soc., 2003, 125(5): 1166-1167
[125] Li D, Wang M, Wu J, Zhang Q, Luo Y, Yu Z, Meng Q, Wu Z. Langmuir, 2009, 25(8): 4808-4814
[126] Yang S C, Yoon H G, Lee S S, Lee H. Mater. Lett., 2009, 63(17): 1465-1467
[127] Lee C P, Lee K M, Chen P Y, Ho K C. Sol. Energy Mater. Sol. Cells, 2009, 93(8): 1411-1416
[128] Bai Y, Cao Y, Zhang J, Wang M, Li R, Wang P, Zakeeruddin S M, Grtzel M. Nature Material, 2008, 7(8): 626-630
[129] Fei Z, Kuang D, Zhao D, Klein C, Ang W H, Zakeeruddin S M, Grtzel M, Dyson P J. Inorg. Chem., 2006, 45(26): 10407-10409
[130] Lee J P, Yoo B, Suresh T, Kang M S, Vital R, Kim K J. Electrochim. Acta, 2009, 54(18): 4365-4370
[131] Jeon S H, Priya A R S, Kang E J, Kim K J. Electrochim. Acta, 2010, 55(20): 5652-5658
[132] Jhong H R, Wong D S H, Wan C C, Wang Y Y, Wei T C. Electrochem. Commun., 2009, 11(1): 209-211
[133] Yamanaka N, Kawano R, Kubo W, Masaki N, Kitamura T, Wada Y, Watanabe M, Yanagida S. J. Phys. Chem. B, 2007, 111(18): 4763-4769
[134] Zhao Y, Zhai J, He J, Chen X, Chen L, Zhang L, Tian Y, Jiang L, Zhu D. Chem. Mater., 2008, 20(19): 6022-6028
[135] Wang M, Xiao X, Zhou X, Li X, Lin Y. Sol. Energy Mater. Sol. Cells, 2007, 91(9): 785-790
[136] Zafer C, Ocakoglu K, Ozsoy C, Icli S. Electrochim. Acta, 2009, 54(24): 5709-5714
[137] Seo D W, Sarker S, Nath N C D, Choi S W, Ahammad A J S, Lee J J, Kim W G. Electrochim. Acta, 2010, 55(4): 1483-1488
[138] Wang P, Wenger B, Humphry-Baker R, Moser J E, Teuscher J, Kantlehner W, Mezger J, Stoyanov E V, Zakeeruddin S M, Grtzel M. J. Am. Chem. Soc., 2005, 127(18): 6850-6856

[1] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[2] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[3] Zhang Huidi, Li Zijie, Shi Weiqun. The Stability Enhancement of Covalent Organic Frameworks and Their Applications in Radionuclide Separation [J]. Progress in Chemistry, 2023, 35(3): 475-495.
[4] Chao Ji, Tuo Li, Xiaofeng Zou, Lu Zhang, Chunjun Liang. Two-Dimensional Perovskite Photovoltaic Devices [J]. Progress in Chemistry, 2022, 34(9): 2063-2080.
[5] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[6] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[7] Xumin Wang, Shuping Li, Renjie He, Chuang Yu, Jia Xie, Shijie Cheng. Quasi-Solid-State Conversion Mechanism for Sulfur Cathodes [J]. Progress in Chemistry, 2022, 34(4): 909-925.
[8] Wei Zhang, Kang Xie, Yunhao Tang, Chuan Qin, Shan Cheng, Ying Ma. Application of Transition Metal Based MOF Materials in Selective Catalytic Reduction of Nitrogen Oxides [J]. Progress in Chemistry, 2022, 34(12): 2638-2650.
[9] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[10] Xiangchun Tang, Jiaxiang Chen, Lina Liu, Shijun Liao. Pt-Based Electrocatalysts with Special Three-Dimensional Morphology or Nanostructure [J]. Progress in Chemistry, 2021, 33(7): 1238-1248.
[11] Song Jiang, Jiapei Wang, Hui Zhu, Qin Zhang, Ye Cong, Xuanke Li. Synthesis and Applications of Two-Dimensional V2C MXene [J]. Progress in Chemistry, 2021, 33(5): 740-751.
[12] Gaojie Yan, Qiong Wu, Linghua Tan. Design, Synthesis and Applications of Nitrogen-Rich Azole-Based Energetic Metal Complexes [J]. Progress in Chemistry, 2021, 33(4): 689-712.
[13] Qi Yang, Nanping Deng, Bowen Cheng, Weimin Kang. Gel Polymer Electrolytes in Lithium Batteries [J]. Progress in Chemistry, 2021, 33(12): 2270-2282.
[14] Qiuyan Liu, Xuefeng Wang, Zhaoxiang Wang, Liquan Chen. Composite Solid Electrolytes with High Contents of Ceramics [J]. Progress in Chemistry, 2021, 33(1): 124-135.
[15] Huirong Peng, Molang Cai, Shuang Ma, Xiaoqiang Shi, Xuepeng Liu, Songyuan Dai. Fabrication and Stability of All-Inorganic Perovskite Solar Cells [J]. Progress in Chemistry, 2021, 33(1): 136-150.