中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (0203): 533-539 Previous Articles   Next Articles

• Review •

Research Progress and Prospects of Lithium Sulfur Batteries

Dong Quanfeng*, Wang Chong, Zheng Mingsen   

  1. State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
  • Received: Revised: Online: Published:
PDF ( 4658 ) Cited
Export

EndNote

Ris

BibTeX

Lithium sulfur battery is a high capacity energy storage system with very bright future, and it is considered as the next generation portable energy supply device for electronic vehicle (EV) and hybrid vehicle (HEV). Through decades of research and development,people understand this system stepwisely. The electrochemistry of sulfur cathode is very complex and hard to be examined,which is the key point to develop lithium sulfur battery. Although there are many unknown mechanisms in the electrochemical process of charge/discharge of the lithium sulfur battery, some achievements have been made on the development of cathode materials which provide various sources to study. Sulfur is an insulating molecular crystal, carbon is added as the additive reagent to improve the electric conductivity in the cathode, sulfur/carbon composite is common as cathode active material in lithium sulfur battery. Ethers and polymers are employed as the components of the electrolytes to coordinate with sulfur cathode. This paper reviews the achievements on lithium sulfur battery in the past decade from the respects of lithium sulfur battery system, cathode materials, electrolytes, cathode structure and new systems based on lithium sulfur battery. The weaknesses are revealed and the future is prospected.

CLC Number: 

[1] ScrosatiB, GarcheJ. J. Power Sources, 2010, 195(9): 2419-2430
[2] ArmandM. TarasconJM, Nature, 2008, 451(7179): 652-657
[3] SelisSM, WondowskiJP, JustusRF. Journal of the Electrochemical Society, 1964, 111(1): 6-13
[4] RauhRD, AbrahamKM, PearsonGF, SurprenantJK, BrummerSB. Journal of the Electrochemical Society, 1979, 126(4): 523-527
[5] YaminH, PeledE. J. Power Sources, 1983, 9(3/4): 281-287
[6] PeramunageD, LichtS. Science, 1993, 261(5124): 1029-1032
[7] NothA, EngelMW, SiegwardR. IEEE Robot. Autom. Mag., 2006, 13(3): 44-52
[8] 皮华滨(Pi H B), 王传新(Wang C X), 汪建华(Wang J H), 吴雪梅(Wu X M). 电池(Battery Bimonthly), 2009, 39(2): 113-115
[9] 张勇(Zhang Y), 武行兵(Wu X B), 张爱勤(Zhang A Q), 王力臻(Wang L Z). 电池(Battery Bimonthly), 2008, 38(4): 257-259
[10] HeXM, RenJG, WangL, PuWH, JiangCY, WanCR. Journal of Power Sources, 2009, 190(1): 154-156
[11] MikhaylikYV, AkridgeJR. Journal of the Electrochemical Society, 2004, 151(11): A1969-A1976
[12] RyuHS, GuoZP, AhnHJ, ChoGB, LiuHK. Journal of Power Sources, 2009, 189(2): 1179-1183
[13] LevillainE, DemortierA, LelieurJP. Encyclopedia of Electrochemistry, 2006, 7a(253), 255-271
[14] KumaresanK, MikhaylikY, WhiteRE. Journal of the Electrochemical Society, 2008, 155(8): A576-A582
[15] KolosnitsynVS, KarasevaEV, AminevaNA, BatyrshinaGA. Russ. J. Electrochem., 2002, 38(3): 329-331
[16] MikhaylikYV, AkridgeJR.J. Electrochem. Soc., 2003, 150(3): A306-A311
[17] 孙莞柠(SunWN), 应皆荣(YingJR), 黄震雷(HuangZL), 姜长印(JiangCY), 万春荣(WanCR). 化学进展(Prog. Chem.), 2009, 21(9): 1963-1968
[18] ChoiYS, KimS, ChoiSS, HanJS, KimJD, JeonSE, JungBH. Electrochimica Acta, 2004, 50(2/3): 833-835
[19] KimNI, LeeCB, SeoJM, LeeWJ, RohYB. Journal of Power Sources, 2004, 132(1/2): 209-212
[20] ShimJ, StriebelKA, CairnsEJ. J. Electrochem. Soc., 2002, 149(10): A1321-A1325
[21] JiXL, LeeKT, NazarLF. Nature Materials, 2009, 8(6): 500-506
[22] 张波(ZhangB), 陈思婷(ChenS T), 高学平(Gao XP). 电化学(Electrochemistry), 16(1): 35-38
[23] ZhangB, LaiC, ZhouZ, GaoXP. Electrochimica Acta, 2009, 54(14): 3708-3713
[24] HanSC, SongMS, LeeH, KimHS, AhnHJ, LeeJY. J. Electrochem. Soc., 2003, 150(7): A889-A893
[25] ChoiYJ, KimKW, AhnHJ, AhnJH. Journal of Alloys and Compounds, 2008, 449(1/2): 313-316
[26] 苑克国(YuanKG), 王维坤(WangWK), 余仲宝(YuZB), 王安邦(WangAB). 电化学(Electrochemistry), 2009, 15(2): 202-205
[27] 王翀(Wang C). 厦门大学博士论文 (Doctoral Dissertation of Xiamen University), 2010
[28] 赵春荣(Zhao C R), 王维坤(Wang W K), 刘荣江(Liu R J), 杨裕生(Yang Y S). 电池(Battery Bimonthly), 2010, 40(1): 6-9
[29] CheonSE, ChoJH, KoKS, KwonCW, ChangDR, KimHT, KimSW. J. Electrochem. Soc., 2002, 149(11): A1437-A1441
[30] WangJ, ChewSY, ZhaoZW, AshrafS, WexlerD, ChenJ, NgSH, ChouSL, LiuHK. Carbon, 2008, 46(2): 229-235
[31] Chen J J, Jia X, She Q J, Wang C, Zhang Q, Zheng M S, Dong Q F. Electrochimica Acta, 2010,55:8062-8066
[32] Wang C, Chen J J, Shi Y N, Zheng M S, Dong Q F. Electrochimica Acta, 2010,55:7010-7015
[33] 张倩(Zhang Q). 厦门大学学士论文(BacheralDissertation of Xiamen University), 2010
[34] 王翀(Wang C),陈嘉嘉(Chen J J),佘秋洁(She Q J),张倩(Zhang Q),施一宁(Shi Y N),郑明森(Zheng M S), 董全峰(Dong Q F). 电化学(Electrochemistry), 2010:16(2):168-170
[35] Yuan L, Yuan H, Qiu X, Chen L, Zhu W. J. Power Sources, 2009, 189(2): 1141-1146
[36] Marmorstein D, Yu T H, Striebel K A, McLarnon F R, Hou J, Cairns E J. Journal of Power Sources, 2000, 89(2): 219-226
[37] Zheng W, Liu Y W, Hu X G, Zhang C F. Electrochimica Acta, 2006, 51(7): 1330-1335
[38] Ryu H S, . Ahn H J, Kim K W, Ahn J H, Cho K K, Nam T H. Electrochimica Acta, 2006, 52(4): 1563-1566
[39] Wang W, Wang Y, Huang Y, Huang C, Yu Z, Zhang H, Wang A, Yuan K. J. Appl. Electrochem., 40(2): 321-325
[40] Ryu H S, Ahn H J, Kim K W, Ahn J H, Cho K K, Nam T H, Kim J U, Cho G B. Journal of Power Sources, 2006, 163(1): 201-206
[41] Kim S, Jung Y J, Lim H S. Electrochimica Acta, 2004, 50(2/3): 889-892
[42] Choi J W, Kim J K, Cheruvally G, Ahn J H, Ahn H J, Kim K W. Electrochimica Acta, 2007, 52(5): 2075-2082
[43] Choi J W, Cheruvally G, Kim D S, Ahn J H, Kim K W, Ahn H J. Journal of Power Sources, 2008, 183(1): 441-445
[44] Yuan L X, Feng J K, Ai X P, Cao Y L, Chen S L, Yang H X. Electrochem. Commun., 2006, 8(4): 610-614
[45] 余仲宝(Yu Z B), 王安邦(Wang A B), 王维坤(Wang W K), 苑克国(Yuan K G), 杨裕生(Yang Y S). 电池(Battery Bimonthly), 2005, 35(5): 329-331
[46] Sun J, Huang Y Q, Wang W K, Yu Z B, Wang A B, Yuan K G. Electrochem. Commun., 2008, 10(6): 930-933
[47] Sun J, Huang Y Q, Wang W K, Yu Z B, Wang A B, Yuan K G. Electrochimica Acta, 2008, 53(24): 7084-7088
[48] Wang Y, Huang Y Q, Wang W K, Huang C J, Yu Z B, Zhang H, Sun J, Wang A B, Yuan K G. Electrochimica Acta, 2009, 54(16): 4062-4066
[49] Zhang W Y, Huang Y Q, Wang W K, Huang C J, Wang Y, Yu Z B, Zhang H. Journal of the Electrochemical Society, 2010, 157(4): A443-A446
[50] Aurbach D, Pollak E, Elazari R, Salitra G, Kelley C S, Affinito J. J. Electrochem. Soc., 2009, 156(8): A694-A702
[51] Hassoun J, Scrosati B. Angewandte Chemie-International Edition, 2010, 49(13): 2371-2374
[52] Yang Y, McDowell M T, Jackson A, Cha J J, Hong S S, Cui Y. Nano Letters, 2010, 10(4): 1486-1491
[53] Zhang S S, Foster D, Read J. Journal of Power Sources, 2010, 195(11): 3684-3688

[1] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[2] Yan Xu, Chungang Yuan. Preparation, Stabilization and Applications of Nano-Zero-Valent Iron Composites in Water Treatment [J]. Progress in Chemistry, 2022, 34(3): 717-742.
[3] Jinzhao Li, Zheng Li, Xupin Zhuang, Jixian Gong, Qiujin Li, Jianfei Zhang. Preparation of Cellulose Nanocrystallines and Their Applications in CompositeMaterials [J]. Progress in Chemistry, 2021, 33(8): 1293-1310.
[4] Zhi Zhang, Chentao Zou, Shuijin Yang. Fabrication of Semiconductor Composite Materials Based on Bismuth Tungstate/Molybdate and Their Application in Photocatalytic Degradation [J]. Progress in Chemistry, 2020, 32(9): 1427-1436.
[5] Jianwen Liu, Heyang Jiang, Chihang Sun, Wenbin Luo, Jing Mao, Kehua Dai. P2-Structure Layered Composite Metal Oxide Cathode Materials for Sodium Ion Batteries [J]. Progress in Chemistry, 2020, 32(6): 803-816.
[6] Guange Wang, Huaning Zhang, Tong Wu, Borui Liu, Qing Huang, Yuefeng Su. Recycling and Regeneration of Spent Lithium-Ion Battery Cathode Materials [J]. Progress in Chemistry, 2020, 32(12): 2064-2074.
[7] Weiyang Lv, Ji’an Sun, Yuyuan Yao, Miao Du, Qiang Zheng. Morphology Control of Layered Double Hydroxide and Its Application in Water Remediation [J]. Progress in Chemistry, 2020, 32(12): 2049-2063.
[8] Zhiyuan Lu, Yanni Liu, Shijun Liao. Enhancing the Stability of Lithium-Rich Manganese-Based Layered Cathode Materials for Li-Ion Batteries Application [J]. Progress in Chemistry, 2020, 32(10): 1504-1514.
[9] Botian Li, Xing Wen, Liming Tang. Preparation of One-Dimensional Polymer-Inorganic Composite Nanomaterials [J]. Progress in Chemistry, 2018, 30(4): 338-348.
[10] Yijia Shao, Bin Huang, Quanbing Liu, Shijun Liao. Preparation and Modification of Ni-Co-Mn Ternary Cathode Materials [J]. Progress in Chemistry, 2018, 30(4): 410-419.
[11] Meiyao Tang, Yanyan Wang, He Shen, Guangbo Che. Solution-Based Preparation Techniques for Two-Dimensional Molybdenum Sulfide Nanosheet and Application of Its Composite Materials in Photocatalysis and Electrocatalysis [J]. Progress in Chemistry, 2018, 30(11): 1646-1659.
[12] Hao Wang, Bangwei Deng, Wujie Ge, Tao Chen, Meizhen Qu, Gongchang Peng. Recent Advances in Prussian Blue Analogues Materials for Sodium-Ion Batteries [J]. Progress in Chemistry, 2017, 29(6): 683-694.
[13] Feng Wu, Shuangyi Zhao, Yun Lu, Jian Li, Yuefeng Su, Lai Chen. Chemical Bonding Hosts for Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2017, 29(6): 593-604.
[14] Zhang Songtao, Zheng Mingbo, Cao Jieming, Pang Huan. Porous Carbon/Sulfur Composite Cathode Materials for Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2016, 28(8): 1148-1155.
[15] Yi Luocai, Ci Suqin, Sun Chengli, Wen Zhenhai. Cathode Materials of Non-Aqueous Lithium-Oxygen Battery [J]. Progress in Chemistry, 2016, 28(8): 1251-1264.