中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (0203): 527-532 Previous Articles   Next Articles

• Review •

Sulfur-Carbon Composite as Cathode with High Capacity

Lai Chao, Li Guochun, Ye Shihai, Gao Xueping*   

  1. Institute of New Energy Material Chemistry, Nankai University, Tianjin 300071, China
  • Received: Revised: Online: Published:
PDF ( 110872 ) Cited
Export

EndNote

Ris

BibTeX

Lithium-sulfur battery has been receiving more attention due to its high theoretical energy density of 2 600Wh/kg. However, there are still some serious problems for sulfur cathode in organic electrolyte, including the lower utilization and poor cycle performance of sulfur active material, which becomes a big barrier for the research and development of lithium-sulfur battery. This review introduces the recent research process of sulfur-carbon composite cathode based on various porous carbon to support elemental sulfur. The larger surface area and developed porosity of porous carbon are beneficial for the homogeneous dispersion of elemental sulfur, and the strong adsorbability arising from the micropores or mesopores can successfully restrain the solubility and loss of lithium polysulfides, thus leading to the improved electrochemical performance of the composite cathodes. Accordingly, this article mainly illustrates the electrochemical capacity and cycle stability of the composites arising from the various pore size of porous carbon. By comparing, it is suggested that hierarchical porous carbon with highly developed micropores and mesopores is the most promising carrier to loading elemental sulfur, as it can ensure both the excellent electrochemical cycle stability and larger electrochemical capacity of the sulfur cathode.

CLC Number: 

[1] Yamin H, Gorenshtein A, Penciner J, Sternberg Y, Peled E. J. Electrochem. Soc ., 1988, 135: 1045-1048
[2] Akridge J R, Mikhaylik Y V, White N. Solid State Ionics , 2004, 175: 243-245
[3] Mikhaylik Y V, Akridge J R. J. Electrochem. Soc ., 2004, 151: 1969-1976
[4] Cheon S E, Ko K S, Cho J H, Kim S W, Chin E Y, Kim H T. J. Electrochem. Soc ., 2003, 150: 796-799
[5] Cheon S E, Ko K S, Cho J H, Kim S W, Chin E Y, Kim H T. J. Electrochem. Soc ., 2003, 150: 800-805
[6] Yuan L X, Feng J K, Ai X P, Cao Y L, Chen S L, Yang H X. Electrochem. Commun ., 2006, 8: 610-614
[7] Yu X G, Xie J Y, Yang J, Wang K. J. Power Sources , 2004, 132: 181-186
[8] Wang J L, Liu L, Ling Z J, Yang J, Wan C R, Jiang C Y. Electrochim. Acta , 2003, 48: 1861-1867
[9] Wang J L, Wang Y W, He X M, Ren J G, Jiang C Y, Wan C R. J. Power Sources , 2004, 138: 271-273
[10] Hayashi A, Ohtomo T, Mizuno F, Tadanaga K, Tatsumisago M. Electrochem. Commun ., 2003, 5: 701-705
[11] Lee Y M, Choi N S, Park J H, Park J K. J. Power Sources , 2003, 119: 964-972
[12] Feng H Z, Nu L Y N, Yang J. Acta Phys.-Chim. Sin ., 2007, 23: 327-331
[13] Sun M M, Zhang S C, Jiang T, Zhang L, Yu J H. Electrochem. Commun ., 2008, 10: 1819-1822
[14] Wang J, Chen J, Konstantinov K, Zhao L, Ng S H, Wang G X, Guo Z P, Liu H K. Electrochim. Acta , 2006, 51: 4634-4638
[15] Wu F, Wu S X, Chen R J, Chen J Z, Chen S. Electrochem. Solid-State Lett ., 2010, 13: 29-31
[16] Wang J L, Yang J, Wan C R, Du K, Xie J Y, Xu N X. Adv. Funct. Mater ., 2003, 13: 487-492
[17] Qiu L L, Zhang S C, Zhang L, Sun M M, Wang W K. Electrochim. Acta , 2010, 55: 4632-4636
[18] 马萍 (Ma P), 张宝宏 (Zhang B H), 徐宇虹 (Xu Y H), 巩桂英 (Gong G Y). 现代化工(Modern Chemical Industry), 2007, 3:27-30
[19] 韩恩山 (Han E S), 宋芸聘 (Song Y P), 王晨旭 (Wang C X), 陈佳宁 (Chen J N). 现代化工(Modern Chemical Industry), 2009, 1:27-32
[20] Zhang B, Lai C, Zhou Z, Gao X P. Electrochim. Acta , 2009, 54: 3708-3713
[21] Zheng W, Liu Y W, Hu X G, Zhang C F. Electrochim. Acta , 2006, 51: 1330-1335
[22] Yuan L X, Yuan H P, Qiu X P, Chen L Q, Zhu W T. J. Power Sources , 2009, 189: 1141-1146
[23] 杜锐 (Du R), 袁中直 (Yuan Z Z). 电化学(Electrochemistry), 2009, 15:284-287
[24] Wu F, Wu S X, Chen R J, Chen S, Wang G Q. Chin. Chem. Lett ., 2009, 20: 1255-1258
[25] 杜锐 (Du R), 袁中直 (Yuan Z Z), 钟清华(Zhong Q H), 王辉(Wang H), 卓华兰(Zhuo H L). 电源技术(Chinese Journal of Power Source), 2008, 132: 845-847
[26] Wang J L, Yang J, Xie J Y, Xu N X, Li Y. Electrochem. Commun ., 2002, 4: 499-502
[27] Wang J, Chew S Y, Zhao Z W, Ashraf S, Wexler D, Chen J, Ng S H, Chou S L, Liu H K. Carbon , 2008, 46: 229-235
[28] JiX L, Lee K T, Nazar L F. Nat. Mater ., 2009, 8: 500-506
[29] Zhang B, Qin X, Li G R, Gao X P. Energy Environ. Sci ., 2010, 3: 1531-1537
[30] Liang C D, Dudney N J, Howe J Y. Chem. Mater ., 2009, 21: 4724-4730
[31] Lai C, Gao X P, Zhang B, Yan T Y, Zhou Z. J. Phys. Chem. C , 2009, 113: 4712-4716
[32] Gao X P, Yang H X. Energy Environ. Sci ., 2010, 3: 174-189
[33] 苑克国(Yuan K G), 王维坤(Wang W K), 余仲宝(Yu Z B), 王安邦(Wang A B). 电化学 (Electrochemistry), 2009, 15: 202-205
[34] Wang Y, Huang Y Q, Wang W K, Huang C J, Yu Z B, Zhang H. Electrochim. Acta , 2009, 54: 4062-4066
[35] Wang Z, Huang Y Q, Wang W K, Huang C J, Wang Y, Yu Z B, Zhang H. J. Electrochem. Soc ., 2010, 157: A443-A446
[36] 张波(Zhang B). 南开大学博士论文(Doctoral Dissertation of Nankai University), 2010
[37] 苑克国(Yuan K G), 王安邦(Wang A B), 王维坤(Wang W K), 余仲宝(Yu Z B). 电池 (Battery Bimonthly), 2007, 37:168-170
[38] 张文华(Zhang W H), 陈瑶(Chen Y), 艾新平(Ai X P), 曹余良(Cao Y L). 电化学 (Electrochemistry), 2010, 16: 16-19
[39] 杨裕生(Yang Y S).第十五届全国电化学会议(The 15th National Conference of Electrochemistry), 长春(Changchun), 2009

[1] Shuai Li, Na Zhu, Yangjian Cheng, Di Chen. Performance of Resistance to Sulfur Oxide and Regeneration over Copper-Based Small-Pore Zeolites Catalysts for the Selective Catalytic Reduction of NOx with NH3 [J]. Progress in Chemistry, 2023, 35(5): 771-779.
[2] Qi Qi, Peizhu Xu, Zhidong Tian, Wei Sun, Yangjie Liu, Xiang Hu. Recent Advances of the Electrode Materials for Sodium-Ion Capacitors [J]. Progress in Chemistry, 2022, 34(9): 2051-2062.
[3] Fengjing Jiang, Hanchen Song. Graphite-based Composite Bipolar Plates for Flow Batteries [J]. Progress in Chemistry, 2022, 34(6): 1290-1297.
[4] Changle Yue, Wenjing Bao, Jilei Liang, Yunqi Liu, Daofeng Sun, Yukun Lu. Application of POMs-Based Sulfided Catalyst in Hydrodesulfurization and Hydrogen Evolution by Electrolysis of Water [J]. Progress in Chemistry, 2022, 34(5): 1061-1075.
[5] Xumin Wang, Shuping Li, Renjie He, Chuang Yu, Jia Xie, Shijie Cheng. Quasi-Solid-State Conversion Mechanism for Sulfur Cathodes [J]. Progress in Chemistry, 2022, 34(4): 909-925.
[6] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[7] Xiaoqiong Feng, Yunlong Ma, Hong Ning, Shiying Zhang, Changsheng An, Jinfeng Li. Transition Metal Chalcogenide Cathode Materials Applied in Aluminum-Ion Batteries [J]. Progress in Chemistry, 2022, 34(2): 319-327.
[8] Zhao Xiaoxi, Wang Cong, Tian Yong, Wang Xiufang. Preparation of Mesoporous Carbon Materials via Emulsion Method [J]. Progress in Chemistry, 2022, 34(10): 2316-2328.
[9] Xinye Liu, Zhichao Liang, Shanxing Wang, Yuanfu Deng, Guohua Chen. Carbon-Based Materials for Modification of Polyolefin Separators to Improve the Performance of Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(9): 1665-1678.
[10] Yun Lu, Hongjuan Shi, Yuefeng Su, Shuangyi Zhao, Lai Chen, Feng Wu. Application of Element-Doped Carbonaceous Materials in Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(9): 1598-1613.
[11] Kedi Cai, Shuang Yan, Tianye Xu, Xiaoshi Lang, Zhenhua Wang. Investigation of Electrode Materials for Lithium Ion Capacitor Battery [J]. Progress in Chemistry, 2021, 33(8): 1404-1413.
[12] Shihao Zhou, Xianwen Wu, Yanhong Xiang, Ling Zhu, Zhixiong Liu, Caixian Zhao. Manganese-Based Cathode Materials for Aqueous Zinc Ion Batteries [J]. Progress in Chemistry, 2021, 33(4): 649-669.
[13] Yusen Ding, Pu Zhang, Hong Li, Wenhuan Zhu, Hao Wei. Research Status and Prospect of Li-Se Batteries [J]. Progress in Chemistry, 2021, 33(4): 610-632.
[14] Fusheng Pan, Yuan Yao, Jie Sun. Catalysis in Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(3): 442-461.
[15] Tianyong Zhang, Wei Wu, Jian Zhu, Bin Li, Shuang Jiang. Stretchable Conductive Polymer Composites Prepared with Nano-Carbon Fillers [J]. Progress in Chemistry, 2021, 33(3): 417-425.