中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (0203): 520-526 Previous Articles   Next Articles

• Review •

New Development of Key Materials for High-Performance Lithium-Sulfur Batteries

Liang Xiao, Wen Zhaoyin*, Liu Yu   

  1. CAS Key Laboratory of Energy Transforming Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • Received: Revised: Online: Published:
PDF ( 4359 ) Cited
Export

EndNote

Ris

BibTeX

The lithium/sulfur redox couple has almost the highest specific-energy density of 2 600Wh/Kg among all the redox couples enabling for chargeable batteries and has a specific capacity of 1 675mAh/g, assuming complete reaction of lithium and sulfur to the product Li2S. Fruitful results were made with the purpose of enhancing the reversibility of the lithium sulfur battery and the utilization of sulfur in the cathode over the past twenty years. In this paper, the effects of the factors on the capacity fading of the lithium sulfur battery are studied. New method and technical development of lithium sulfur battery reported in recent years are reviewed, mainly including the development of the cathode materials, adhesive agents, electrolyte and anode of the battery. The further tendencies of lithium sulfur battery are also represented.

CLC Number: 

[1] Marmorstein D, Yu T H, Striebel K A, McLarnon F R, Hou J, Cairns E J. J. Power Sources, 2000, 89: 219-226
[2] Petr N, Klaus M, Santhanam K S V, Otto H. Chem. Rev., 1997, 97: 207-282
[3] Yamin H, Peled E. J. Power Sources, 1983, 9: 281-287
[4] Wang J L, Yang J, Xie J Y, Xu N X. Adv. Mater., 2002, 14: 963-965
[5] . http: //www. sionpower. com
[6] Kumaresan K, Mikhaylik Y, White R. J. Electrochem. Soc., 2008, 155: A576-A582
[7] Mikhaylik Y V, Akridge J R. J. Electrochem. Soc., 2004, 151: A1969-A1976
[8] He X M, Ren J G, Wang L, Pu W H, Jiang C Y, Wan C R. J. Power Sources, 2009, 190: 154-156
[9] Cheon S E, Choi S S, Han J S, Choi Y S, Jung B H, Lim H S. J. Electrochem. Soc., 2004, 151: A2067-A2073
[10] Ji X L, Lee K T, Nazar L F. Nature Mater., 2009, 8: 500-506
[11] Lai C, Gao X P, Zhang B, Yan T Y, Zhou Z. J. Phys. Chem. C, 2009, 113: 4712-4716
[12] Liang C D, Dudney N J, Howe J Y. Chem. Mater. , 2009, 21: 4724-4730
[13] Wang J L, Yang J, Xie J Y, Xu N X, Li Y. Electrochem. Commun ., 2002, 4: 499-502
[14] Zhang B, Lai C, Zhou Z, Gao X P. Electrochim. Acta, 2009, 54: 3708-3713
[15] Zheng W, Liu Y W, Hu X G, Zhang C F. Electrochim. Acta, 2006, 51: 1330-1335
[16] Yuan L X, Yuan H P, Qiu X P, Chen L Q, Zhu W T. J. Power Sources , 2009, 189: 1141-1146
[17] Zhu X J, Wen Z Y, Gu Z H, Lin Z X. J. Power Sources, 2005, 139: 269-273
[18] Wang J, Chen J, Konstantinov K, Zhao L, Ng S H, Wang G X, Guo Z P, Liu H K. Electrochim. Acta, 2006, 51: 4634-4638
[19] Sun M M, Zhang S C, Jiang T, Zhang L, Yu J H. Electrochem. Commun., 2008, 10: 1819-1822
[20] Liang X, Wen Z Y, Liu Y, Wang X Y, Zhang H, Wu M F, Huang L Z. Solid State Ionics, 2010, doi: 10.1016/j.ssi.2010.07.016
[21] Qiu L L, Zhang S C, Zhang L, Sun M M, Wang W K. Electrochim. Acta, 2010: 55 4632-4636
[22] 马萍(Ma P), 张宝宏(Zhang B H), 徐宇虹(Xu Y H)等. 现代化工(Modern Chemical Industry), 2007, 27 (3): 30-33
[23] 马萍(Ma P), 张宝宏(Zhang B H), 巩桂英(Gong G Y)等. 电子元件与材料(Electronic Components & Materials), 2007, 26 (8): 42-45
[24] Zheng W, Hu X G, Zhang C F. Electrochem. Solid State Lett., 2006, 9: A364-A367
[25] Sun J, Huang Y Q, Wang W K, Yu Z B, Wang A B, Yuan K G. Electrochim. Acta, 2008, 53: 7084-7088
[26] Sun J, Huang Y Q, Wang W K, Yu Z B, Wang A B, Yuan K G. Electrochem. Commun., 2008, 10: 930-933
[27] 伍英蕾(Wu Y L), 杨军(Yang J), 王久林(Wang J L)等. 物理化学学报(Acta Physico-Chimica Sinica), 2010, 26(2): 283-290
[28] Han J S, Choi S S, Park S H, Choi Y S. US 20030143462-A1, 2003
[29] Rauh R D, Shuker F S, Marston J M, Brummer S B. J. Inorg. Nucl. Chem., 1977, 39: 1761-1766
[30] Tobishima S, Yamamoto H, Matsuda M. Electrochem. Acta, 1997, 42: 1019-1029
[31] Peled E, Sternberg Y, Gorenshtein A, Lavi Y. J. Electrochem. Soc., 1989, 136: 1621-1925
[32] Chu M, de Jonghe L C, Uisco S J, Katz B D, Chu M Y, Dejonghe L C, Chu M, Jonghe L C D. US 6030720, 1999
[33] Peled E, Gorenshtein A, Segal M, Sternberg Y. J. Power Sources, 1989, 26: 269-271
[34] Chang D R, Leea S H, Kima S W, Kim H T. J. Power Sources, 2002, 112: 452-460
[35] Choi J W, Kim J K, Cheruvally G, Ahn J H, Ahnb H J, Kimb K W. Electrochim. Acta, 2007, 52: 2075-2082
[36] Wang W K, Wang Y, Huang Y Q, Huang C J, Yu Z B, Zhang H, Wang A B, Yuan K G. J. Appl. Electrochem., 2010, 40: 321-325
[37] Kim S, Jung Y, Park S J. J. Power Sources, 2005, 152: 272-277
[38] Yuan L X, Feng J K, Ai X P, Cao Y L, Chen S L, Yang H. X. Electrochem. Commun., 2006, 8: 610-614
[39] Machida N, Maeda H, Peng H, Shigematsu T. J. Electrochem. Soc., 2002, 149: A688-A693
[40] Hayashi A, Ohtomo T, Mizuno F, Tadanaga K, Tatsumisago M. Electrochem. Commun., 2003, 5: 701-705
[41] Hayashi A, Ohtsubo R, Ohtomo T, Mizuno F, Tatsumisago M. J. Power Sources, 2008, 183: 422-426
[42] Xu X X, Wen Z Y, Yang X L, Zhang J C, Gu Z H. Solid State Ionics, 2006, 177: 2611-2615
[43] Xu X X, Wen Z Y, Wu J G, Yang X L, Solid State Ionics, 2007, 178: 29-34
[44] Xu X X, Wen Z Y, Yang X L, Chen L D. Materials Research Bulletin, 2008, 43: 2334-2341
[45] Lee Y M, Choi N S, Park J H, Park J K, J. Power Sources, 2003, 119/121: 964-972
[46] Hassoun J, Scrosati B. Angew. Chem., 2010, 49: 1-5
[47] Yang Y, McDowell M T, Jackson A, Cha J J, Hong S S, Cui Y. Nano Lett., 2010, 10: 1486-1491

[1] Xumin Wang, Shuping Li, Renjie He, Chuang Yu, Jia Xie, Shijie Cheng. Quasi-Solid-State Conversion Mechanism for Sulfur Cathodes [J]. Progress in Chemistry, 2022, 34(4): 909-925.
[2] Feng Wu, Shuangyi Zhao, Yun Lu, Jian Li, Yuefeng Su, Lai Chen. Chemical Bonding Hosts for Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2017, 29(6): 593-604.
[3] Dong Quanfeng, Wang Chong, Zheng Mingsen. Research Progress and Prospects of Lithium Sulfur Batteries [J]. Progress in Chemistry, 2011, 23(0203): 533-539.