中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (0203): 501-508 Previous Articles   Next Articles

• Review •

Pt-Based Intermetallic Compounds as Electrocatalysts

Li Xiang1, An Li1, Zhang Lijuan1, Li Fan1, Wang Xiayan1, Xia Dingguo2*   

  1. 1. College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China;
    2. College of Engineering, Peking University, Beijing 100871, China
  • Received: Revised: Online: Published:
PDF ( 1494 ) Cited
Export

EndNote

Ris

BibTeX

In order to improve catalytic activity and stability, alloying Pt with a non-noble metal has proved to be a successful strategy for the development of new electrocatalysts for low temperature fuel cell. An alloy is a mixture containing two or more metallic elements or metallic and nonmetallic elements usually fused together or dissolving into each other when molten. Solid solution is the alloy when two metals (or nonmetallic) are completely soluble in liquid state and also completely soluble in solid state. Usually, the atomic positions and stoichiometric of the solid solution are uncertain, for example, commercial electrocatalyst PtRu alloy. Intermetallic compound is a compound of two or more metallic elements or metallic and nonmetallic elements. Usually, the atomic positions and stoichiometric of the intermetallic compound are fixed. Pt-based intermetallic compounds have been paid more and more attentions by researchers due to its many excellent properties. In this review paper, we present the recent progress of Pt-based intermetallic compounds used in low temperature fuel cell. The synthesis method and some Pt-based intermetallic compounds are present. The future development of this research field is prospected.

CLC Number: 

[1] Sinha J, Yang Y. Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive Applications, 2010 DOE Annual Merit Review (2010-06-09). http: //www1. eere. energy. gov/hydrogenandfuelcells/index. html
[2] Borup R, Meyers J, Pivovar B, et al. Chem. Rev., 2007, 107: 3904-3951
[3] Arico A S, Srinivasan S, Antonucci V. Fuel Cells, 2001, 1: 133-157
[4] Chen A C, Holt-Hindle P. Chem. Rev., 2010, 110: 3767-3804
[5] 徐绍龄(Xu S L), 马衡(Ma H), 刘振义(Liu Z Y), 刘庆娴(Liu Q X), 杜家声(Du J S). 无机化学丛书九卷,铂系(Series of Inorganic Chemistry,Vol.9), 北京, 科学出版社(Beijing: Science Press),1998. 379-381
[6] Stamenkovic V R, Mun B S, Arenz M, Mayrhofer K J J, Lucas C A, Wang G F, Ross P N, Markovic N M. Nature Materials, 2007, 6: 241-246
[7] Toda T, Igarashi H, Uchida H, Watanabe M. J. Electrochem. Soc., 1999, 146: 3750-3756
[8] Li X, Chen G, Xie J, Zhang L J, Xia D G, Wu Z Y. J. Electrochem. Soc., 2010, 157(4): B580-B584
[9] Wu B H, Hu D, Kuang Y J, Liu B, Zhang X H, Chen J H. Angew. Chem. Int. Ed., 2009, 48: 4751-4754
[10] Casado-Rivera E, Volpe D J, Alden L, Lind C, Downie C, Vazquez-Alvarez T, Angelo A C D, Disalvo F J, Abruna H D. J. Am. Chem. Soc., 2004, 126: 4043-4049
[11] Ji X L, Lee K T, Holden R, Zhang L, Zhang J J, Botton G A, Couillard M, Nazar L F. Nature Chemistry, 2010, 2: 286-293
[12] 包永千(Bao Y Q). 金属学基础(Fundamental of Metallography), 北京: 冶金工业出版社(Beijing: Metallurgical Industry Press), 1986. 86-94
[13] Westbrook J H, Fleischer R L. Crystal Structures of Intermetallic Compounds, Chichester: John Wiley&Sons, LTD, 2000. 1-10
[14] Austin C M, Kelly T J, Mcallister K J, Chesnutt J C. Structural Intermetallics. TMS Warrendale, USA
[15] Seo W S, Lee J H, Sun X M, Suzuki Y, Mann D, Liu Z, Terashima M, Yang P C, McConnell M V, Nishimura D G, Dai H J. Nature Materials, 2006, 5: 971-976
[16] Horton J A, Wright J L, Herchenroeder J W. IEEE Trans. On Magnetics, 1996, 32: 4374-4376
[17] Fu Y Q, Du H J, Huang W M, Zhang S, Hu M. Sensor Actuat. A-Phys., 2004, 112: 395-408
[18] Wallace W E, Karlicek R F, Imamura H. J. Phys. Chem., 1979, 83: 1708-1712
[19] Zhang L J, Zhang X B, Xia D G. Mater. Lett., 2005, 59: 3448-3451
[20] Xia D G, Chen G, Wang Z Y, Zhang J J, Hui S Q, Ghosh D, Wang H J. Chem. Mater., 2006, 18: 5746-5749
[21] Schaak R E, Sra A K, Leonard B M, Cable R E, Bauer J C, Han Y F, Means J, Teizer W, Vasquez Y, Funck E S. J. Am. Chem. Soc., 2005, 127: 3506-3515
[22] 张丽娟(Zhang L J), 夏定国(Xia D G), 王振尧(Wang Z Y), 袁嵘(Yuan R), 吴自玉(Wu Z Y). 物理化学学报(Acta Phys. Chim. Sin.), 2005, 21: 287-290
[23] 张丽娟(Zhang L J), 夏定国(Xia D G). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2006, 22: 1085-1089
[24] Zhang L J, Xia D G., Appl. Surf. Sci., 2006, 252: 2191-2195
[25] 张丽娟(Zhang L J), 夏定国(Xia D G). 物理化学学报(Acta Phys. Chim. Sin.), 2005, 21: 1006-1010
[26] Zhang L J, Wang Z Y, Xia D G. J. Alloys Compd., 2006, 426: 268-271
[27] Miura A, Wang H S, Leonard B M, Abruna H D, Disalvo F J. Chem. Mater., 2009, 21: 2661-2667
[28] Kulifay S M. J. Am. Chem. Soc., 1961, 83: 4916-4919
[29] Wang J P, Asmussen R M, Adams B, Thomas D F, Chen A C. Chem. Mater., 2009, 21: 1716-1724
[30] Roychowdhury C, Matsumoto F, Zeldovich V B, Warren S C, Mutolo P F, Ballesteros M J, Wiesner U, Abruna H D, Disalvo F J. Chem. Mater., 2006, 18: 3365-3372
[31] Ghosh T, Leonard B M, Zhou Q, DiSalvo F J. Chem. Mater., 2010, 22: 2190-2202
[32] Ghosh T, Matsumoto F, McInnis J, Weiss M, Abruna H D, DiSalvo F J. J. Nanopart. Res., 2009, 11: 965-980
[33] Ghosh T, Zhou Q, Gregoire J M, Dover R B, DiSalvo F J. J. Phys. Chem. C, 2010, 114: 12545-12553
[34] Abe H, Matsumoto F, Alden L R, Warren S C, Abruna H D, DiSalvo F J. J. Am. Chem. Soc., 2008, 130: 5452-5458
[35] Roychowdhury C, Matsumoto F, Mutolo P F, Abruna H D, DiSalvo F J. Chem. Mater., 2005, 17: 5871-5876
[36] Vasquez Y, Luo Z, Schaak R E. J. Am. Chem. Soc., 2008, 130: 11866-11867
[37] Leonard B M, Schaak R E. J. Am. Chem. Soc., 2006, 128: 11475-11482
[38] Schaak R E, Sra A K, Leonard B M, Cable R E, Bauer J C, Han Y F, Means J, Teizer W, Vasquez Y, Funck E S. J. Am. Chem. Soc., 2005, 127: 3506-3515
[39] Cable R E, Schaak R E. Chem. Mater., 2005, 17: 6835-6841
[40] Cable R E, Schaak R E. J. Am. Chem. Soc., 2006, 128: 9588-9589
[41] Schaefer Z L, Vaughn D D, Schaak R E. J. Alloys Compounds, 2010, 490: 98-102
[42] Henderson N L, Straesser M D, Sabato P D, Schaak R E. Green Chem., 2009, 11: 974-978
[43] Bauer J C, Chen X L, Liu Q S, Phan T H, Schaak R E. J. Mater. Chem., 2008, 18: 275-282
[44] 李翔(Li X), 夏定国(Xia D G), 安丽(An L), 张丽娟(Zhang L J), 刘淑珍(Liu S Z). CN1026019.7, 2010
[45] 李翔(Li X), 夏定国(Xia D G), 陈戈(Chen G), 刘淑珍(Liu S Z), 张丽娟(Zhang L J). CN101785999A, 2010
[46] Okamoto H. J. Phase Equilibria, 1991, 12(2): 207-210
[47] Massalski T B. Binary Alloy Phase Diagram, Vol. 2, 2nd ed., ASM International, USA (1990)
[48] Wang H, Alden L, Disalvo F J, Abruna H D. Phys. Chem. Chem. Phys., 2008, 10: 3739-3751
[49] Casado-Rivera E, Gal Z, Angelo A C D, Lind C, Disalvo F J, Abruna H D. ChemPhysChem, 2003, 4: 193-199
[50] Volpe D, Casado-Rivera E, Alden L, Lind C, Hagerdon K, Downie C, Korzeniewski C, Disalvo F J, Abruna H D. J. Electrochem. Soc., 2004, 151: A971-A977
[51] Oana M, Hoffmann R, Abruna H D, DiSalvo F J. Surf. Sci., 2005, 574: 1-16
[52] Wang L L, Johnson D D. J. Phys. Chem. C, 2008, 112: 8266-8275
[53] de-los-Santos-Alvarez N, Alden L R, Rus E, Wang H, DiSalvo F J, Abruna H D. J. Electroanal. Chem., 2009, 626: 14-22
[54] Blasini D R, Rochefort D, Fachini E, Alden L R, Disalvo F J, Cabrera C R, Abruna H D. Surf. Sci., 2006, 600: 2670-2680
[55] Toda T, Igarashi H, Watanabe M. J. Electroanal. Chem., 1999, 460: 258-262
[56] Toda T, Igarashi H, Watanabe M. J. Electrochem. Soc., 1998, 146: 4185-4188
[57] Xiong L, Manthiram A. J. Electrochem. Soc., 2005, 152(4): A697-A703
[58] Zhang J, Fang J Y. J. Am. Chem. Soc., 2009, 131(51): 18543-18547
[59] Kim K T, Hwang J T, Kim Y G, Chung J S. J. Electrochem. Soc., 1993, 140(1): 31-36
[60] Chen W, Kim J, Sun S H, Chen S W. Langmuir, 2007, 23: 11303-11310
[61] Chen W, Kim J, Sun S H, Chen S W. J. Phys. Chem. C, 2008, 112: 3891-3898
[62] Chen W, Kim J, Sun S H, Chen S W. Phys. Chem. Chem. Phys., 2006, 8: 2779-2786
[63] Baglio V, Di Blasi A, DUrso C, Antonucci V, Arico A S, Ornelas R, Morales-Acosta D, Ledesma-Garcia J, Godinez L A, Arriaga L G, Alvarez-Contreras L. J. Electrochem. Soc., 2008, 155(8): B829-B833
[64] Ferrando R, Jellinek J, Johnston R L. Chem. Rev., 2008, 108: 845-910
[65] Gutfleisch O, Lyubina J, Muller K H, Schultz L. Adv. Eng. Mater., 2005, 7: 208-212
[66] Qiu J M, Wang J P. Adv. Mater., 2007, 19: 1703-1706
[67] Jeyadevan B, Hobo A, Urakawa K, Chinnasamy C N, Shinoda K, Tohji K. J. Appl. Phys., 2003, 93: 7574-7576
[68] Latham A H, Williams M E. Acc. Chem. Res., 2008, 41: 411-420
[69] Sun S H. Adv. Mater., 2006, 18: 393-403
[70] Gruner M E, Rollmann G, Entel P, Farle M. Phys. Rev. Lett., 2008, 100(8): art. no. 087203
[71] Heitsch A T, Lee D C, Korgel B A. J. Phys. Chem. C, 2010, 114 (6): 2512-2518
[72] Sun S, Murray C B, Weller D, Folks L, Moser A. Science, 2000, 287: 1989-1992
[73] Saita S, Maenosono S. Chem. Mater., 2005, 17: 3705-3710.
[74] Sun S, Fullerton E E, Weller D, Murray C B. IEEE Trans. Magn., 2001, 37: 1239-1243
[75] Chen M, Liu J P, Sun S. J. Am. Chem. Soc., 2004, 126: 8394-8395
[76] Howard L E M, Nguyen H L, Giblin S R, Tanner B K, Terry I, Hughes A K, Evans J S O. J. Am. Chem. Soc., 2005, 127: 10140-10141
[77] Elkins K E, Vedantam T S, Liu J P, Zeng H, Sun S, Wang Z L, Ding Y. Nano Lett., 2003, 3: 1647-1649
[78] Varanda L C, Jafelicci M. J. Am. Chem. Soc., 2006, 128: 11062-11066
[79] Kang S, Harrell J W, Nikles D E. Nano Lett., 2002, 2: 1033-1036
[80] Chen M, Kim J, Liu J P, Fan H, Sun S. J. Am. Chem. Soc., 2006, 128: 7132-7133
[81] Liu K, Ho C L, Aouba S, Zhao Y Q, Lu Z H, Petrov S, Coombs N, Dube P, Ruda H E, Wong W Y, Manners I. Angew. Chem. Int. Ed., 2008, 120: 1275-1279
[82] Song H M, Hong J H, Lee Y B, Kim W S, Kim Y, Kim S J, Hur N H. Chem. Commun., 2006, 12: 1292-1294
[83] Song H M, Kim W S, Lee Y B, Hong J H, Lee H G, Hur N H. J. Mater. Chem., 2009, 19: 3677-3681
[84] Kim J, Rong C, Liu J P, Sun S. Adv. Mater., 2009, 21: 906-909
[85] Yamamoto S, Morimoto Y, Tamada Y, Takahashi Y K, Hono K, Ono T, Takano M. Chem. Mater., 2006 18: 5385-5388
[86] Tamada Y, Yamamoto S, Takano M, Nasu S, Ono T. Appl. Phys. Lett., 2007, 90: art. no. 162509
[87] Liu C, Wu X, Klemmer T, Shukla N, Weller D, Roy A G, Tanase M, Laughlin D. Chem. Mater., 2005, 17: 620-625
[88] Malheiro A R, Perez J, Villullas H M. J. Electrochem. Soc., 2009, 156: B51-B58
[89] Kim J, Lee Y, Sun S. J. Am. Chem. Soc., 2010, 132: 4996-4997
[90] Staunton J B, Ostanin S, Razee S S A, Gyorffy B L, Szunyogh L, Ginatempo B, Bruno E. Phys. Rev. Lett., 2004, 93: art. no. 257204
[91] Burkert T, Eriksson O, Simak S I, Ruban A V, Sanyal B, Nordstrom L, Wills J M. Phys. Rev. B, 2005, 71: art. no. 134411
[92] Ghosh T, Vukmirovic M B, DiSalvo F J, Adzic R R. J. Am. Chem. Soc., 2010, 132: 906-907
[93] Liu Z F, Jackson G S, Eichhorn B W. Angew. Chem. Int. Ed., 2010, 49: 3173-3176
[94] Shao M H, Sasaki K, Adzic R R. J. Am. Chem. Soc., 2006, 128: 3526-3527

[1] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[2] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[3] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[4] Hao Sun, Chaopeng Wang, Jun Yin, Jian Zhu. Fabrication of Electrocatalytic Electrodes for Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 519-532.
[5] Minglong Lu, Xiaoyun Zhang, Fan Yang, Lian Wang, Yuqiao Wang. Surface/Interface Modulation in Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 547-556.
[6] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[7] Yaqi Wang, Qiang Wu, Junling Chen, Feng Liang. Diels-Alder Reaction Catalyst [J]. Progress in Chemistry, 2022, 34(2): 474-486.
[8] Xiangjuan Chen, Huan Wang, Weijia An, Li Liu, Wenquan Cui. Study on Photoelectrocatalysis of Organic Carbon Materials [J]. Progress in Chemistry, 2022, 34(11): 2361-2372.
[9] Wenjing Wang, Di Zeng, Juxue Wang, Yu Zhang, Ling Zhang, Wenzhong Wang. Synthesis and Application of Bismuth-Based Metal-Organic Framework [J]. Progress in Chemistry, 2022, 34(11): 2405-2416.
[10] Yanmei Ren, Jiajun Wang, Ping Wang. Molybdenum Disulfide as an Electrocatalyst for Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2021, 33(8): 1270-1279.
[11] Xiaolu Liu, Yuxiao Geng, Ran Hao, Yuping Liu, Zhongyong Yuan, Wei Li. Electrocatalytic Nitrogen Reduction Reaction under Ambient Condition: Current Status, Challenges, and Perspectives [J]. Progress in Chemistry, 2021, 33(7): 1074-1091.
[12] Jiaqi Han, Zhida Li, Deqiang Ji, Dandan Yuan, Hongjun Wu. Single-Atom-Modified MoS2 for Efficient Hydrogen Evolution [J]. Progress in Chemistry, 2021, 33(12): 2392-2403.
[13] Xuechen Liu, Juanjuan Xing, Haipeng Wang, Yuanyi Zhou, Ling Zhang, Wenzhong Wang. Selective HMF Oxidation into Bio-Based Polyester Monomer FDCA [J]. Progress in Chemistry, 2020, 32(9): 1294-1306.
[14] Jining Zhang, Shuang Cao, Wenping Hu, Lingyu Piao. Hydrogen Production by Photoelectrocatalytic Seawater Splitting [J]. Progress in Chemistry, 2020, 32(9): 1376-1385.
[15] Yu Du, Depei Liu, Shicheng Yan, Tao Yu, Zhigang Zou. NiFe Layered Double Hydroxides for Oxygen Evolution Reaction [J]. Progress in Chemistry, 2020, 32(9): 1386-1401.