中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (0203): 477-486 Previous Articles   Next Articles

• Review •

Reversible Solid Oxide Cell with Proton Conducting Electrolyte: Materials and Reaction Machanism

He Fei, Peng Ranran*, Yang Shangfeng   

  1. CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
  • Received: Revised: Online: Published:
PDF ( 1543 ) Cited
Export

EndNote

Ris

BibTeX

Reversible solid oxide cells based on proton conducting electrolytes (H-RSOC) are regarded as efficient energy conversion devices for practical application of renewable energy, such as solar energy and wind energy to smooth out their fluctuation and intermittence. In this paper, the requirements and development of electrode and electrolyte materials for H-RSOC are briefly reviewed, and especially, the reaction mechanisms of air electrode with respect to their demand on air electrode materials are summarized. Working in solid oxide fuel cells (SOFC) mode, the migration of protons to triple phase boundaries (TPBs) and the surface diffusion of oxygen ions to TPBs are supposed to be the rate limiting steps, which favors the composite consisting of oxygen ion-electron mixed conductors and proton conductors as air electrode. While in solid oxide electrolysis cells (SOEC) mode, the transferring of protons decomposed from water to TPBs and the protons at TPBs transferring to the electrolyte are deemed as the rate limiting steps, and novel proton-electron mixed conductor might be the best choice of such air electrode. That’s because that the proton transfer in such proton-electron mixed conducting air electrode would be greatly improved for their high volume ratio (~60%) and for their greatly enlarged electro active sites, which expands from traditional TPBs in composite electrodes to the interface of gas phase/ mixed conducting air electrode.

CLC Number: 

[1] Elangovan S, Hartvigsen J J. International Journal of Applied Ceramic Technology, 2007, 4: 109-119
[2] Stambouli A B, Traversa E. Renewable & Sustainable Energy Reviews, 2002, 6: 433-455
[3] Liang M D, Yu B, Wen M F, Chen J, Xu J M, Zhai Y C. J. Power Sources, 2009, 190: 341-345
[4] Laguna-Bercero M A, Skinner S J, Kilner J A. J. Power Sources, 2009, 192: 126-131
[5] Kharton V V, Marques F M B, Atkinson A. Solid State Ionics, 2004, 174: 135-149
[6] Kreuer K D. Annual Review of Materials Research, 2003, 33: 333-359
[7] Jensen S H, Mogensen M. 19th World Energy Congress, 2004
[8] Hashimoto S, Liu Y, Mori M, Funahashi Y, Fujishiro Y. Int. J. Hydrogen Energy, 2009, 34: 1159-1165
[9] Jensen S H, Larsen P H, Mogensen M. Int. J. Hydrogen Energy, 2007, 32: 3253-3257
[10] Ni M, Leung M K H, Leung D Y C. Int. J. Hydrogen Energy, 2008, 33: 2337-2354
[11] Fujiwara S, Kasai S, Yamauchi H, Yamada K, Makino S, Matsunaga K, Yoshino M, Kameda T, Ogawa T, Momma S, Hoashi E. Prog. Nucl. Energy, 2008, 50: 422-426
[12] Stoots C, O'Brien J, Hartvigsen J. Int. J. Hydrogen Energy, 2009, 34: 4208-4215
[13] Ni M, Leung M K H, Leung D Y. J. Power Sources, 2008, 177: 369-375
[14] Ni M, Leung M K H, Leung D Y C. Int. J. Hydrogen Energy, 2007, 32: 2305-2313
[15] Kobayashi T, Abe K, Ukyo Y, Matsumoto H. Solid State Ionics, 2001, 138: 243-251
[16] Peng R R, Wu Y, Yang L Z, Mao Z Q. Solid State Ionics, 2006, 177: 389-393
[17] Xie K, Yan R Q, Chen X R, Dong D H, Wang S L, Liu X Q, Meng G Y. J. Alloys Compd., 2009, 472: 551-555
[18] Azad A K, Irvine J T S. Solid State Ionics, 2007, 178: 635-640
[19] Iwahara H, Esaka T, Uchida H, Maeda N. Solid State Ionics, 1981, 3-4: 359-363
[20] Stuart P A, Unno T, Kilner J A, Skinner S J. Solid State Ionics, 2008, 179: 1120-1124
[21] Sakai T, Matsushita S, Matsumoto H, Okada S, Hashimoto S, Ishihara T. Int. J. Hydrogen Energy, 2009, 34: 56-63
[22] Phair J W, Badwal S P S. Ionics, 2006, 12: 103-115
[23] Bohn H G, Schober T. J. Am. Ceram. Soc., 2000, 83: 768-772
[24] Kreuer K D. Solid State Ionics, 1999, 125: 285-302
[25] Taniguchi N, Nishimura C, Kato J. Solid State Ionics, 2001, 145: 349-355
[26] Serra J M, Meulenberg W A. J. Am. Ceram. Soc., 2007, 90: 2082-2089
[27] Norby T. Solid State Ionics, 1999, 125: 1-11
[28] Tao S W, Irvine J T S. Adv. Mater., 2006, 18: 1581-1585
[29] Fabbri E, D'Epifanio A, Di Bartolomeo E, Licoccia S, Traversa E. Solid State Ionics, 2008, 179: 558-564
[30] Zhong Z M. Solid State Ionics, 2007, 178: 213-221
[31] Fabbri E, Pergolesi D, D'Epifanio A, Di Bartolomeo E, Balestrino G, Licoccia S, Traversa E. Energy & Environmental Science, 2008, 1: 355-359
[32] Barison S, Battagliarin M, Cavallin T, Doubova L, Fabrizio M, Mortalo C, Boldrini S, Malavasi L, Gerbasi R. J. Mater. Chem., 2008, 18: 5120-5128
[33] Barison S, Battagliarin M, Cavallin T, Daolio S, Doubova L, Fabrizio M, Mortalo C, Boldrini S, Gerbasi R. Fuel Cells, 2008, 8: 360-368
[34] Katahira K, Kohchi Y, Shimura T, Iwahara H. Solid State Ionics, 2000, 138: 91-99
[35] Zuo C D, Zha S W, Liu M L, Hatano M, Uchiyama M. Adv. Mater., 2006, 18: 3318-3320
[36] Wang H, Peng R R, Wu X F, Hu J L, Xia C R. J. Am. Ceram. Soc., 2009, 92: 2623-2629
[37] Bi L, Zhang S Q, Fang S M, Tao Z T, Peng R R, Liu W. Electrochem. Commun., 2008, 10: 1598-1601
[38] Du Y, Nowick A S. Solid State Ionics, 1996, 91: 85-91
[39] Schober T, Krug F, Schilling W. Solid State Ionics, 1997, 97: 369-373
[40] Schober T, Bohn H H, Mono T, Schilling W. Solid State Ionics, 1999, 118: 173-178
[41] Bohn H G, Schober T, Mono T, Schilling W. Solid State Ionics, 1999, 117: 219-216
[42] Du Y, Nowick A S. Solid State Ionics, 1996, 91: 85-91
[43] Valkenberg S, Bohn H G, Schilling W. Solid State Ionics, 1997, 97: 511-515
[44] Ma G, Zhang F, Zhu J, Meng G. Chem. Mater., 2006, 18: 6006-6011
[45] Omata T, Ikeda K, Tokashiki R, Otsuka-Yao-Matsuo S. Solid State Ionics, 2004, 167: 389-397
[46] Omata T, Okuda K, Tsugimoto S, Otsuka-Matsuo-Yao S. Solid State Ionics, 1997, 104: 249-258
[47] Shimura T, Komori M, Iwahara H. Solid State Ionics, 1996, 86/88: 685-689
[48] Endo A, Ihara M, Komiyama H, Yamada K. Solid State Ionics, 1996, 86-88: 1191-1195
[49] Jiang S P. Journal of Materials Science, 2008, 43: 6799-6833
[50] Ishihara T, Kudo T, Matsuda H, Takita Y. J. Electrochem. Soc., 1995, 142: 1519-1524
[51] Takeda Y, Kanno R, Noda M, Tomida Y, Yamamoto O. J. Electrochem. Soc., 1987, 134: 2656-2661
[52] Wu T Z, Peng R R, Xia C R. Solid State Ionics, 2008, 179: 1505-1508
[53] Hui Z, Michele P. J. Mater. Chem., 2002, 12: 3787-3791
[54] Tao Z T, Bi L, Yan L T, Sun W P, Zhu Z W, Peng R R, Liu W. Electrochem. Commun., 2009, 11: 688-690
[55] Tao Z, Bi L, Zhu Z, Liu W. J. Power Sources, 2009, 194: 801-804
[56] Peng R R, Wu T Z, Liu W, Liu X Q, Meng G Y. J. Mater. Chem., 2010, 20: 6218-6225
[57] Taillades G, Dailly J, Taillades-Jacquin M, Mauvy F, Essouhmi A, Marrony M, Lalanne C, Fourcade S, Jones D J, Grenier J C, Roziere J. Fuel Cells, 2010, 10: 166-173
[58] Wu T Z, Zhao Y Q, Peng R R, Xia C R. Electrochim. Acta, 2009, 54: 4888-4892
[59] Wu X, Wang H, Peng R, Xia C, Meng G. Solid State Ionics, 2010, doi: 10.1016/j.ssi.2010.05.053
[60] He F, Song D, Peng R R, Meng G Y, Yang S F. J. Power Sources, 2010, 195: 3359-3364
[61] Ni M, Leung M K H, Leung D Y C. Int. J. Hydrogen Energy, 2008, 33: 4040-4047
[62] He F, Wu T Z, Peng R R, Xia C R. J. Power Sources, 2009, 194: 263-268
[63] Wu T Z, Rao Y Y, Peng R R, Xia C R. J. Power Sources, 2010, 195: 5508-5513

[1] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[2] Qi Huang, Zhenyu Xing. Advances in Lithium Selenium Batteries [J]. Progress in Chemistry, 2022, 34(11): 2517-2539.
[3] Yin Xie, Liyang Zhang, Peijin Ying, Jiacheng Wang, Kuan Sun, Meng Li. Intensified Field-Effect of Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2021, 33(9): 1571-1585.
[4] Xiaolin Liu, Xiya Yang, Hailong Wang, Kang Wang, Jianzhuang Jiang. Organic Compounds as Electrode Materials for Rechargeable Devices [J]. Progress in Chemistry, 2021, 33(5): 818-837.
[5] Yi Zhang, Meng Zhang, Yifan Tong, Haixia Cui, Pandeng Hu, Weiwei Huang. Application of Multi-Carbonyl Covalent Organic Frameworks in Secondary Batteries [J]. Progress in Chemistry, 2021, 33(11): 2024-2032.
[6] Shaoming Qiao, Naibao Huang, Zhengyuan Gao, Shixian Zhou, Yin Sun. Nickel-Manganese Binary Metal Oxide as Electrode Materials for Supercapacitors [J]. Progress in Chemistry, 2019, 31(8): 1177-1186.
[7] Lishan Peng, Zidong Wei*. Design and Product Engineering of High-Performance Electrode Catalytic Materials for Water Electrolysis [J]. Progress in Chemistry, 2018, 30(1): 14-28.
[8] Yongming Zhu, Yunpeng Jiang, Huili Hu*. Preparation and Application of Nanometer NCS in Electrochemical Energy Conversion and Storage [J]. Progress in Chemistry, 2017, 29(11): 1422-1434.
[9] Zhao Chong, Xu Fen*, Sun Lixian*, Fan Minghui, Zou Yongjin, Chu Hailiang. Hydrogen Generation by Al-Based Materials Hydrolysis [J]. Progress in Chemistry, 2016, 28(12): 1870-1879.
[10] Xia Wen, Li Zheng, Xu Yinli, Zhuang Xupin, Jia Shiru, Zhang Jianfei. Bacterial Cellulose Based Electrode Material for Supercapacitors [J]. Progress in Chemistry, 2016, 28(11): 1682-1688.
[11] Wang Cheng, Wang Shubo, Zhang Jianbo, Li Jianqiu, Wang Jianlong, Yang Minggao. The Durability Research on the Proton Exchange Membrane Fuel Cell for Automobile Application [J]. Progress in Chemistry, 2015, 27(4): 424-435.
[12] Zhuang Shuxin, Lv Jianxian, Lu Mi, Liu Yimin, Chen Xiaobin. Preparation and Applications of Perovskite-Type Oxides as Electrode Materials for Solid Oxide Fuel Cell and Metal-Air Battery [J]. Progress in Chemistry, 2015, 27(4): 436-447.
[13] Wang Cheng, Wang Shubo, Zhang Jianbo, Li Jianqiu, Yang Minggao, Wang Jianlong. The Key Materials and Components for Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2015, 27(2/3): 310-320.
[14] Jin Yi, Sun Xin, Yu Yan, Ding Chuxiong, Chen Chunhua, Guan Yibiao. Research Progress in Sodium-Ion Battery Materials for Energy Storage [J]. Progress in Chemistry, 2014, 26(04): 582-591.
[15] Li Xue, Zhang Yifang, Qi Weihong, Cao Xiaowu, Wang Yuan, Li Haohua. Hydrogen Storage Nanoalloys [J]. Progress in Chemistry, 2013, 25(07): 1122-1130.