中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (0203): 470-476 Previous Articles   Next Articles

• Review •

Doped Zirconia/Ceria Electrolyte Fabricated at Low Temperature

Liu Ze, Lei Ze, Song Shidong, Yu Lian, Han Minfang*   

  1. Union Research Center of Fuel Cells, School of Chemical & Environmental Engineering, China University of Mining & Technology (CUMTB), Beijing 100083, China
  • Received: Revised: Online: Published:
PDF ( 1602 ) Cited
Export

EndNote

Ris

BibTeX

The manufacturing of solid oxide fuel cell (SOFC) and its main components at low temperature are very important to optimise the performance of material, cell and lower the cost. The cubic full dense yttria stabilized zirconia (YSZ) electrolyte, one of the most popular electrolyte in SOFC, is obtained by three-step sintering process at 1 200—1 300℃ from nano powders, which needs to be dense at 1 400—1 450℃ by traditional sintering process. The scandia stabilized zirconia (ScSZ) and gadolinia doped ceria (GDC) electrolytes are sintered to be full dense respectively at low temperature of 900℃ and 800℃ from 3nm powders of ScSZ and by sintering additives, which, now, are widely used in SOFC process. The low temperature process of SOFC would be benefit to put forward SOFC commercial ization in the market.

CLC Number: 

[1] Steele B C H, Heinzel A. Nature, 2001, 414: 345-352
[2] Yamahara K, Jacobson C P, Visco S J, et al. Solid State Ionics, 2005, 176: 275-279
[3] Leng Y J, Chan S H, Khor K A, et al. J. Power Sources, 2003, 117: 26-34
[4] Li J G, Ikegami T, Mori T. Acta Mater., 2004, 52: 2221-2228
[5] Han M F, Tang X L, Yin H Y, et al. J. Power Sources, 2007, 165: 757-763
[6] Mondal P, Klein A, Jaegermann W, et al. Solid State Ionics, 1999, 119: 331-339
[7] Bao W, Chang Q, Meng G. J. Membr. Sci., 2005, 259: 103-109
[8] Han M F, Yin H Y, Miao W T, et al. Solid State Ionics, 2008, 179: 1545-1548
[9] Yamahara K, Jacobson C P, Visco S J, et al. Solid State Ionics, 2005, 176: 451-456
[10] Orui H, Watanabe K, Arakawa M. J. Power Sources, 2002, 112: 90-97
[11] Singhal S C, Kendall K. High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications. Elsevier Ltd., 2003, 103
[12] Han M F, Yang Z B, Liu Z, et al. Key Eng. Mater., 2010, 434/435: 705-709
[13] Han M F, Tang X L, Shao W. J. Wuhan Univ. Tech. Mater. Sci., 2008, 23: 775-778
[14] Han M F, Tang X L, Peng S P. Rare Met., 2006, 25: 209-212
[15] Mizutani Y, Tamura M, Kawai M, et al. Solid State Ionics, 1994, 72: 271-275
[16] Nomura K, Mizutani Y, Kawai M, et al. Solid State Ionics, 2000, 132: 235-239
[17] Lei Z, Zhu Q. Solid State Ionics, 2005, 176: 2791-2797
[18] Van Herle J, Horita T, Kawada T, et al. Solid State Ionics, 1996, 86/88: 1255-1258
[19] Mori M, Suda E, Pacaud B, et al. J. Power Sources, 2006, 157: 688-694
[20] Gil V, Moure C, Duran P, et al. Solid State Ionics, 2007, 178: 359-365
[21] Fagg D P, Kharton V V, Frade J R. J. Electroceram., 2002, 9: 199-207
[22] Jud E, Gauckler L J. J. Electroceram., 2005, 15: 159-166
[23] Kleinlogel C, Gauckler L J. Solid State Ionics, 2000, 135: 567-573
[24] Kleinlogel C, Gauckler L J. Adv. Mater., 2001, 13: 1081-1085
[25] Han M F, Zhou S, Liu Z, et al. Solid State Ionics, 2010, doi: 10.1016/j.ssi.2010.06.019
[26] Nicholas J D, Jonghe L C D. Solid State Ionics, 2007, 178: 1187-1194
[27] Esposito V, Zunic M, Traversa E. Solid State Ionics, 2009, 180: 1069-1075
[28] Han M F, Liu Z, Zhou S, et al. J. Mater. Sci. Tech., 2010, in press
[29] Harmer M P, Brook R J. Trans. J. Brit. Ceram. Soc., 1981, 80: 147-148
[30] Chen I W, Wang X H. Nat., 2000, 404: 168-171
[31] Markmann J, Tschope A, Birringer R. Acta Mater., 2002, 50: 1433-1440
[32] Chen P L, Chen I W. J. Am. Ceram. Soc., 1996, 79: 3129-3141
[33] Groza J R. Nanostruct. Mater., 1999, 12: 987-992
[34] Johnson J L, German R M. Metall. Mater. Trans. A, 1996, 72: 441-450
[35] Jud E, Huwiler C B, Gauckler L J. J. Am. Ceram. Soc., 2005, 88: 3013-3019
[36] Basu R N, Blass G. J. Eur. Ceram. Soc., 2005, 25: 463-471
[37] Guo X, Waser R. Prog. Mater. Sci., 2006, 51: 151-210
[38] Zhang T S, Ma J, Leng Y J, et al. Solid State Ionics, 2004, 168: 187-195
[39] Lewis G S, Atkinson A, Steele B C H, et al. Solid State Ionics, 2002, 152/153: 567-573
[40] Seo D J, Ryu K O, Park S B, et al. Mater. Res. Bull., 2006, 41: 359-366

[1] Bingguo Zhao, Yadi Liu, Haoran Hu, Yangjun Zhang, Zezhi Zeng. Electrophoretic Deposition in the Preparation of Electrolyte Thin Films for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2023, 35(5): 794-806.
[2] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[3] Qi Yang, Nanping Deng, Bowen Cheng, Weimin Kang. Gel Polymer Electrolytes in Lithium Batteries [J]. Progress in Chemistry, 2021, 33(12): 2270-2282.
[4] Jingchen Tian, Gongde Wu, Yanjun Liu, Jie Wan, Xiaoli Wang, Lin Deng. Application of Supported Non-Noble Metal Catalysts for Formaldehyde Oxidation at Low Temperature [J]. Progress in Chemistry, 2021, 33(11): 2069-2084.
[5] Dong Li, Yuying Zheng, Haoxiong Nan, Yanxiong Fang, Quanbing Liu, Qiang Zhang. Electrolyte for Solid Lithium-Sulfur Batteries with High Safety and High Specific Energy [J]. Progress in Chemistry, 2020, 32(7): 1003-1014.
[6] Jiamiao Chen, Jingwen Xiong, Shaomin Ji, Yanping Huo, Jingwei Zhao, Liang Liang. All Solid Polymer Electrolytes for Lithium Batteries [J]. Progress in Chemistry, 2020, 32(4): 481-496.
[7] Jinglun Wang, Qin Ran, Chongyu Han, Zilong Tang, Qiduo Chen, Xueying Qin. Organosilicon Functionalized Electrolytes for Lithium-Ion Batteries [J]. Progress in Chemistry, 2020, 32(4): 467-480.
[8] Xiaohan Wang, Caixia Liu, Chunfeng Song, Degang Ma, Zhenguo Li, Qingling Liu. Application of Metal-Organic Frameworks for Low-Temperature Selective Catalytic Reduction of NO with NH3 [J]. Progress in Chemistry, 2020, 32(12): 1917-1929.
[9] Jinxin Yi, Zhipeng Huo, Abdullah M. Asiri, Khalid A. Alamry, Jiaxing Li. Development and Application of Electrolytes in Supercapacitors [J]. Progress in Chemistry, 2018, 30(11): 1624-1633.
[10] Zhang He, Zhang Chi, Song Ye. Fabrication of Anodic Titania Nanotube Arrays with Tunable Morphologies [J]. Progress in Chemistry, 2016, 28(6): 773-783.
[11] Shi Jingjing, Guo Xing, Chen Renjie, Wu Feng. Recent Progress in Flexible Battery [J]. Progress in Chemistry, 2016, 28(4): 577-588.
[12] Xiong Lina, Zhang Xueqin, Sun Ying, Yang Hong. Synthesis, Self-Assembly and Application of All-Conjugated Block Copolymers [J]. Progress in Chemistry, 2015, 27(12): 1774-1783.
[13] Liu Shaoming, Yu Bo, Zhang Wenqiang, Zhu Jianxin, Zhai Yuchun, Chen Jing. Atomic-Scale Insights into the Oxygen Ionic Transport Mechanisms of Oxygen Electrode in Solid Oxide Cells:A Review [J]. Progress in Chemistry, 2014, 26(09): 1570-1585.
[14] Wan Wenbo, Pu Weihua, Ai Desheng. Research Progress in Lithium Sulfur Battery [J]. Progress in Chemistry, 2013, 25(11): 1830-1841.
[15] Han Jinduo, Wen Zhaoyin, Zhang Jingchao, Ma Guoqiang, Chi Xiaowei. CaZrO3 Based High Temperature Proton Conductors [J]. Progress in Chemistry, 2012, (9): 1845-1856.