中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (0203): 463-469 Previous Articles   Next Articles

• Review •

The Key Materials and the Stacks of SOFCs

Chen Jianying, Zeng Fanrong, Wang Shaorong*, Chen Wei, Zheng Xuebin   

  1. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • Received: Revised: Online: Published:
PDF ( 1747 ) Cited
Export

EndNote

Ris

BibTeX

In this review, various kinds of key materials of solid oxide fuel cells (SOFCs) are summarized such as the electrolyte, cathode, and anode materials. Their functions, requirements, and development tendency are discussed. Different key materials are compared in order to find the way of improving their performance. In addition, the development of the SOFC stacks in Shanghai Institute of Ceramic is also introduced. The Researchers have solved the problem of high temperature sealing and succeeded in thermal cycling; as for the interconnector, they have successfully designed the structures for gas flowing and sealing, and solved the key problems of plasma spraying for the alloy protecting layer; they have also developed the test devices for the 1 000W and 5 000W SOFC stacks. The highest power obtained was more than 800W; the longest operation time was over 1 400h with the degradation rate being less than 3%/1 000h.

CLC Number: 

[1] 王绍荣(Wang S R), 中国科技成果(China Science and Technology Achievements), 2007(06), 57
[2] 宋伟良(Song W L), WTO与能源营销(WTO and Energy Marketing), 湖北: 湖北人民出版社(Hubei: Hubei Peoples Press), 2001 (10) 7-8
[3] Shimada T, Wen C, Taniguchi N. Journal of Power Sources, 2004, 131: 289-292
[4] Fehringer G, Janes S, Wildersohn M. Journal of the European Ceramic Society, 2004, 5: 705-715
[5] Magraso A, Calleja A, Capdevila X. Solid State Ionics, 2004, 166: 359-364
[6] 由宏新(You H X), 陈刚(Chen G), 刘瑞瑞(Liu R R), 周一卉(Zhou Y H), 阿布理提 ·阿布都拉(Abuliti Abudula), 丁信伟(Ding X W), 硅酸盐学报(Journal of the Chinese Ceramic Society), 2009, 37(8): 1306-1310
[7] Masanori H, Takayuki O, Kenji U. Solid State Ionics, 2003, 158: 215-223
[8] Wang Z R, Qian J Q, Cao J D, Wang S R, Wen T L. Journal of Alloys and Compounds, 2007, 437: 264-268
[9] Yang D F, Zhang X F, Nikumb S, Decès-Petit C, Hui R. Maric R, Ghosh D, J. Power Sources, 2006, 164: 182-188
[10] Wang S, Oikawa E, Hashimoto T J. Electrochem. Soc., 2004, 151: E46-E50
[11] Wang S, Inaba H, Tagawa H, Hashimoto T, J. Electrochem. Soc., 1997, 144: 4076-4080
[12] Wang S, Inaba H, Tagawa H, Dokiya M, Hashimoto T, Solid State Ionics, 1998, 107: 73-79
[13] Ishihara T, Matsuda H, Takita Y. J. Am. Chem. Soc., 1994, 116: 3801-3803
[14] Chen J Y, Rebello J, Vashook V, Trots D M, Wang S R, Wen T L, Zosel J, Guth U. Solid State Ionics, 2010, doi: 10.1016/j.ssi.2010.04.019
[15] Sasaki K, Tamura J, Dokiya M. Solid State Ionics, 2001, 144: 233-240
[16] Doshi R, Richards V L, Carter J D, Wang X P, Krumpelt M. J Electrochem. Soc., 1999, 146(4): 1273- 1278
[17] Ngamou P H T, Bahlawane N. J. Solid State Chem., 2009, 182(4): 849-854
[18] Wang W, Jiang S P. Solid State Ionics, 2006, 177(15/16): 361-369
[19] Ye F, Wang Z C, Weng W, Cheng K, Song C L, Du P Y, Shen G R, Han G R. Thin Solid Films, 2008, 516: 5206-5209
[20] Lee B K, Lee J Y, Jung H Y, Lee J H, Hwang J H. Solid State Ionics, 2008, 179: 955-959
[21] Piao J H, Sun K, Zhang N Q, Xu S. Journal of Power Sources, 2008, 175: 288-295
[22] Li J L, Wang S R, Wang Z G, Liu R Z, Wen T L, Wen Z Y. Journal of Power Sources, 2008, 179: 474-480
[23] Chen J, Liang F L, Liu L N, Jiang S P, Chi B, Pu J, Li J. Journal of Power Sources, 2008, 183: 586-589
[24] Jiang Z Y, Xia C R, Chen F L. Electrochimica Acta, 2010, 55: 3595-3605
[25] Wang S R, Katsuki M, Dokiya M, Hashimoto T, Solid State Ionics, 2003, 159: 71- 78
[26] Minh N Q, Takahashi T. Elsevier Science B.V., Amsterdam: 1995
[27] Yamamoto O, Takeda Y, Kanno R, Noda M. Solid State Ionics, 1987, 22: 241-246
[28] Hjalmarsson P, Sgaard M, Mogensen M. Solid State Ionics, 2008, 179: 1422-1426
[29] Mai A, Haanappel V A C, Tietz F, Vinke I C, Stver D. The Electrochemical Society, (Eds. Singhal S C, Dokiya M) Pennington, NJ, 2003, 525-532
[30] Mai A, Haanappel V A C, Uhlenbruck S, Tietz F, Stver D. Solid State Ionics, 2005, 176: 1341-1350
[31] Shao Z, Haile S M, Nature, 2004, 431: 170-173.
[32] Lee S, Lim Y, Lee E A, Hwang H J, Moonb J W. Journal of Power Sources, 2006, 157: 848-854
[33] Yu H C, Zhao F, Virkar A V. J. Power Sources, 2005, 152: 22-26
[34] Komatsu T, Chiba R, Arai H, Sato K. Journal of Power Sources, 2008, 176: 132-137
[35] Yokoo M, Tabata Y, Yoshida Y, Hayashi K, Nozaki Y, Arai H. Journal of Power Sources, 2008, 178: 59-63
[36] Millar L, Taherparvar H, Filkin N, Slater P, Yeomans J. Solid State Ionics, 2008, 179: 732-739
[37] Mauvy F, Lalanne C, Bassat J M, Grenier J C, Zhao H, Dordor P, Stevens P. Journal of the European Ceramic Society, 2005, 252: 669-2672
[38] Marina Q A, Bagger C, Primdahl S, Mogensen M. Solid State Ionics, 1999, 123: 199-208
[39] Murray E P, Tsai T, Barnett S A. Nature, 2000, 400: 649-651
[40] Ye X F, Huang B, Wang S R, Sun X F, Nie H W, Hu Q, Shi J, Wen T L. Journal of Power Sources, 2007, 164: 203-209
[41] Wang S, Kato T, Nagata S. Proc. 4th Eur. SOFC Forum, July 2000, Luzern, Switzerland, 1: 479-488
[42] Joerger M B, Kleinlogel C M, Perednis D, Gauckler L J. Proc. 4th Eur. SOFC Forum, July 2000, Luzern, Switzerland, 1: 489-496
[43] Zhan Z, Barnett S. Science, 2005, 308: 844-847
[44] Ye X F, Wang S R, Hu Q, Wang Z R, Wen T L, Wen Z Y. Electrochemistry Communications, 2009, 11(4): 823-826
[45] Ye X F, Wang S R, Hu Q, Chen J Y, Wen T L, Wen Z Y. Solid State Ionics, 2009, 180 (2/3): 276-281
[46] Sun X F, Wang S R, Wang Z R, Qian J Q, Wen T L, Huang F Q. Journal of Power Sources, 2009, 187(1): 85-89
[47] Savaniu C D, Irvine J T S. Solid State Ionics, 2010, doi: 10.1016/j.ssi.2010.02.010
[48] Ye X F, Wang S R, Hu Q, Chen J Y, Wen T L, Wen Z Y. Solid State Ionics, 2009, 180: 276-281
[49] Ye X F, Wang S R, Wang Z R, Hu Q, Sun X F, Wen T L, Wen Z Y. Journal of Power Sources, 2008, 183: 512-517
[50] Ye X F, Wang S R, Wang Z R, Xiong L, Sun X F, Wen T L. Journal of Power Sources, 2008, 177: 419-425
[51] Ye X F, Wang S R, Hu Q, Wang Z R, Wen T L, Wen Z Y. Electrochemistry Communications, 2009, 11: 823-826

[1] Bingguo Zhao, Yadi Liu, Haoran Hu, Yangjun Zhang, Zezhi Zeng. Electrophoretic Deposition in the Preparation of Electrolyte Thin Films for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2023, 35(5): 794-806.
[2] Yu Xiaoyan, Li Meng, Wei Lei, Qiu Jingyi, Cao Gaoping, Wen Yuehua. Application of Polyacrylonitrile in the Electrolytes of Lithium Metal Battery [J]. Progress in Chemistry, 2023, 35(3): 390-406.
[3] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[4] Qi Qi, Peizhu Xu, Zhidong Tian, Wei Sun, Yangjie Liu, Xiang Hu. Recent Advances of the Electrode Materials for Sodium-Ion Capacitors [J]. Progress in Chemistry, 2022, 34(9): 2051-2062.
[5] Xumin Wang, Shuping Li, Renjie He, Chuang Yu, Jia Xie, Shijie Cheng. Quasi-Solid-State Conversion Mechanism for Sulfur Cathodes [J]. Progress in Chemistry, 2022, 34(4): 909-925.
[6] Xinyang Yue, Jian Bao, Cui Ma, Xiaojing Wu, Yongning Zhou. Three-Dimension Skeleton Supported Lithium Metal Composite Anodes through Thermal Infusing Strategy [J]. Progress in Chemistry, 2022, 34(3): 683-695.
[7] Xiaoqiong Feng, Yunlong Ma, Hong Ning, Shiying Zhang, Changsheng An, Jinfeng Li. Transition Metal Chalcogenide Cathode Materials Applied in Aluminum-Ion Batteries [J]. Progress in Chemistry, 2022, 34(2): 319-327.
[8] Yang Zhang, Min Zhang, Hailei Zhao. Double Perovskite Material as Anode for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2022, 34(2): 272-284.
[9] Qi Huang, Zhenyu Xing. Advances in Lithium Selenium Batteries [J]. Progress in Chemistry, 2022, 34(11): 2517-2539.
[10] Long Chen, Shaobo Huang, Jingyi Qiu, Hao Zhang, Gaoping Cao. Polymer Electrolyte/Anode Interface in Solid-State Lithium Battery [J]. Progress in Chemistry, 2021, 33(8): 1378-1389.
[11] Yang Chen, Xiaoli Cui. Titanium Dioxide Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1249-1269.
[12] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[13] Kedi Cai, Shuang Yan, Tianye Xu, Xiaoshi Lang, Zhenhua Wang. Investigation of Electrode Materials for Lithium Ion Capacitor Battery [J]. Progress in Chemistry, 2021, 33(8): 1404-1413.
[14] Wentao Li, Hai Zhong, Yaohua Mai. In-Situ Polymerization Electrolytes for Lithium Rechargeable Batteries [J]. Progress in Chemistry, 2021, 33(6): 988-997.
[15] Guoyong Huang, Xi Dong, Jianwei Du, Xiaohua Sun, Botian Li, Haimu Ye. High-Voltage Electrolyte for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(5): 855-867.
Viewed
Full text


Abstract

The Key Materials and the Stacks of SOFCs