中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (0203): 430-440 Previous Articles   Next Articles

• Review •

Low Temperature Solid Oxide Fuel Cells

Zhang Lei, Xia Changrong*   

  1. CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science & Engineering, University of Science & Technology of China, Hefei 230026, China
  • Received: Revised: Online: Published:
PDF ( 1813 ) Cited
Export

EndNote

Ris

BibTeX

Solid oxide fuel cells (SOFCs) are an novel energy conversion device, which has been extensively used for its high energy efficiency, high stability, fuel flexibility, and low pollution emission. Lowering down its operating temperature is important for commercialization. More attentions are therefore paid on how to decrease the operating temperature from traditional 800—1 000℃ to 600℃ or below. The paper summarizes the development of the electrolytes, cathodes, and anodes for SOFCs operated below 600℃. Choosing alternative ceria-based oxides with high ionic conductivity at low temperature, decreasing the electrolyte thickness, and constructing bilayered electrolytes with additional electronic blocking layer to enhance the open circuit voltage are all effective approaches for the improving electrolytes. While for the electrodes, novel materials are developed to increase the catalytic activity at low temperature. Moreover, ion-impregnation method is applied to optimize the microstructure of electrodes. Thus the triple phase boundary and active site has been enhanced, resulting in decreased electrode resistance and direct utilization of hydrocarbon without carbon deposition. In addition, new types of low temperature SOFCs such as single chamber SOFCs and micro SOFCs are also presented, which might have significant impact on the development of low temperature SOFCs.

CLC Number: 

[1] Steele B C H, Heinzel A. Nature, 2001, 414(15): 345-352
[2] Ormerod R M. Chem. Soc. Rev., 2003, 32: 17-28
[3] Stambouli A B, Traversa E. Renew. Sust. Energ. Rev., 2002, 6: 433-455
[4] 毛宗强(Mao Z Q), 黄建兵(Huang J B), 王诚(Wang C), 刘志祥(Liu Z X). 电源技术(Chinese Journal of Power Sources), 2008, 32(2): 75-79
[5] Tietz F, Buchkremer H P, Stover D. Solid State Ionics, 2002, 152/153: 373-381
[6] Ralph J M, Schoeler A C, Krumpelt M. J. Mater. Sci., 2001, 36: 1161-1172
[7] 于兴文(Yu X W), 黄学杰(Huang X J), 陈立泉(Chen L Q). 电池(Battery Bimonthly). 2002, 32(2): 110-112
[8] Tsipis E V, Kharton V V. J. Solid State Electrochem., 2008, 12: 1039-1060
[9] Arachi Y, Sakai H, Yamamoto O, Takeda Y, Imanishai N. Solid State Ionics, 1999, 121: 133-139
[10] Eguchi K, Setoguchi T, Inoue T, Arai H. Solid State Ionics, 1992, 52: 165-172
[11] Wincewicz K C, Cooper J S. J. Power Sources, 2005, 140: 280-296
[12] Mogensen M, Sammes N M, Tompsett G A. Solid State Ionics, 2000, 129: 63-94
[13] Yahiro H, Eguchi K, Arai H. Solid State Ionics, 1989, 36: 71-75
[14] Yahiro H, Ohuchi T, Eguchi K, Arai H. J. Mater. Sci., 1988, 23: 1036-1041
[15] Inaba H, Tagawa H. Solid State Ionics, 1996, 83: 1-16
[16] Zha S, Xia C, Meng G. J. Power Sources, 2003, 115: 44-48
[17] Huang W, Shuk P, Greenblatt M. Chem. Mater., 1997, 9: 2240-2245
[18] Yahiro H, Eguchi Y, Eguchi K, Arai H. J. Appl. Electrochem., 1988, 18: 527-531
[19] Huang W, Shuk P, Greenblatt M. Solid State Ionics, 1997, 100: 23-27
[20] Peng R, Xia C, Fu Q, Meng G, Peng D. Mater. Lett., 2002, 56: 1043-1047
[21] Li H, Xia C, Zhu M, Zhou Z, Wei X, Meng G. Ceram. Int., 2007, 33: 201-205
[22] Li H, Xia C, Zhu M, Zhou Z, Meng G. Acta Mater., 2006, 54: 721-727
[23] Ding D, Liu B, Zhu Z, Zhou S, Xia C. Solid State Ionics, 2008, 179: 896-899
[24] Ding D, Liu B, Gong M, Liu X, Xia C. Electrochim. Acta, 2010, 55: 4529-4535
[25] Tian R, Zhao F, Chen F, Xia C. Solid State Ionics, in Press
[26] Will J, Mitterdorfer A, Kleinlogel C, Perednis D, Gauckler L J. Solid State Ionics, 2000, 131: 79-96
[27] Beckel D, Hütter A B, Harvey A, Infortuna A, Muecke U P, Prestat M, Rupp J L M, Gauckler L J. J. Power Sources, 2007, 173: 325-345
[28] Xia C, Liu M. Solid State Ionics, 2001, 144: 249-255
[29] Peng R, Xia C, Liu X, Peng D, Meng G. Solid State Ionics, 2002, 152/153: 561-565
[30] Ai N, Lü Z, Chen K, Huang X, Liu Y, Wang R, Su W. J. Membr. Sci., 2006, 286: 255-259
[31] Liu M, Peng R, Dong D, Gao J, Liu X, Meng G. J. Power Sources, 2008, 185: 188-192
[32] Zhao F, Wang Z, Liu M, Zhang L, Xia C, Chen F. J. Power Sources, 2008, 185: 13-18
[33] Wang S, Kobayashi T, Dokiya M, Hashimotob T. J. Electrochem. Soc., 2000, 147(10): 3606-3609
[34] Badwal S P S, Ciacchi F T, Drennan J. Solid State Ionics, 1999, 121: 253-262
[35] Atkinson A. Solid State Ionics, 1997, 95: 249-258
[36] Matsui T, Inaba M, Mineshige A, Ogumi Z. Solid State Ionics, 2005, 176: 647-654
[37] Riess I. Solid State Ionics, 1992, 52: 127-134
[38] Riess I. J. Electrochem. Soc., 1981, 128(10): 2077-2081
[39] Doshi R, Richards V L, Carter J D, Wang X, Krumpelt M. J. Electrochem. Soc., 1999, 146(4): 1273-1278
[40] Ding C, Lin H, Sato K, Amezawa K, Kawada T, Mizusaki J, Hashida T. J. Power Sources, 2010, 195: 5487-5492
[41] Barnett S A. Energy, 1990, 15(1): 1-9
[42] Tsai T, Perry E, Barnett S. J. Electrochem. Soc., 1997, 144(5): L130-L132
[43] Wachsman E D, Jayaweera P, Jiang N, Lowe D M, Pound B G. J. Electrochem. Soc., 1997, 144(1): 233-236
[44] Zhang L, Xia C, Zhao F, Chen F. Mater. Res. Bull., 2010, 45: 603-608
[45] Ahn J S, Pergolesi D, Camaratta M A, Yoon H, Lee B W, Lee K T, Jung D W, Traversa E, Wachsman E D. Eelectrochem. Commun., 2009, 11: 1504-1507
[46] Adler S B. Chem. Rev., 2004, 104: 4791-4843
[47] 卢俊彪(Lu J B), 张中太(Zhang Z T), 唐子龙(Tang Z L). 稀有金属材料与工程(Rare Metal Materials and Engineering), 2005, 34(8): 1177-1180
[48] 高展(Gao Z), 张萍(Zhang P), 高瑞峰(Gao R F), 黄建兵(Huang J B), 毛宗强(Mao Z Q). 化工新型材料(New Chemical Materials), 2007, 35(2): 6-8
[49] Ullmann H, Trofimenko N. Solid State Ionics, 1999, 119: 1-8
[50] Zhao F, Wang X, Wang Z, Peng R, Xia C. Solid State Ionics, 2008, 179: 1450-1453
[51] Tarancón A, Skinner S J, Chater R J, Ramírez F H, Kilner J A. J. Mater. Chem., 2007, 17: 3175-3181
[52] Xia C, Liu M. Adv. Mater., 2002, 14(7): 521-523
[53] Petric A, Huang P, Tietz F. Solid State Ionics, 2000, 135: 719-725
[54] Wei B, Lü Z, Li S, Liu Y, Liu K, Su W. Electrochem. Solid-State Lett., 2005, 8(8): A428-A431
[55] Jiang S P. J. Mater. Sci., 2008, 43: 6799-6833
[56] Murray E P, Sever M J, Barnett S A. Solid State Ionics, 2002, 148: 27-34
[57] Dusastre V, Kilner J A. Solid State Ionics, 1999, 126: 163-174
[58] Zhao F, Peng R, Xia C. Mater. Res. Bull., 2008, 43: 370-376
[59] Jiang S P. Mater Sci. Eng. A, 2006, 418: 199-210
[60] Sholklapper T Z, Kurokawa H, Jacobson C P, Visco S J, Jonghe L C D. Nano Lett., 2007, 7(7): 2136-2141
[61] Zhang Y, Xia C. J. Power Sources, 2010, 195: 6611-6618
[62] Zhang L, Zhao F, Peng R, Xia C. Solid State Ionics, 2008, 179: 1553-1556
[63] 彭苏萍(Peng S P), 韩敏芳(Han M F). 自然杂志(Chinese Journal of Nature), 2009, 31(4): 187-192
[64] Mclntosh S, Gorte R J. Chem. Rev., 2004, 104: 4845-4865
[65] Jiang S P, Chan S H. J. Mater. Sci., 2004, 39: 4405-4439
[66] Simwonis D, Tietz F, Stover D. Solid State Ionics, 2000, 132: 241-251
[67] Eguchi K, Setoguchi T, Okamoto K, Arai H. in: (Eds.), Proc. International Fuel Cell Conf., Mukuhari: 1992. 373
[68] 丁冬(Ding D). 中国科学技术大学博士论文(Doctoral Dissertation of University of Science and Technology of China), 2009
[69] Park S, Vohs J M, Gorte R J. Nature, 2000, 404(16): 265-267
[70] Gorte R J, Park S, Vohs J M, Wang C. Adv. Mater., 2000, 12(19): 1465-1469
[71] Xie Z, Xia C, Zhang M, Zhu W, Wang H. J. Power Sources, 2006, 161: 1056-1061
[72] Zhan Z, Barnett S A. Science, 2005, 308: 844-847
[73] Sun C, Xie Z, Xia C, Li H, Chen L. Eelectrochem. Commun., 2006, 8: 833-838
[74] Zhu W, Xia C, Fan J, Peng R, Meng G. J. Power Sources, 2006, 160: 897-902
[75] Ding D, Liu Z, Li L, Xia C. Eelectrochem. Commun., 2008, 10: 1295-1298
[76] Zhu W, Ding D, Xia C. Electrochem. Solid-State Lett., 2008, 11(6): B83-B86
[77] Ding D, Zhu W, Gao J, Xia C. J. Power Sources, 2008, 179: 177-185
[78] Ding D, Li L, Feng K, Liu Z, Xia C. J. Power Sources, 2009, 187: 400-402
[79] He B, Ding D, Xia C. J. Power Sources, 2010, 195: 1359-1364
[80] 王康(Wang K), 邵宗平(Shao Z W). 化学进展(Progress in Chemistry), 2007, 19(2/3): 267-275
[81] Hao Y, Shao Z P, Mederos J, Lai W, Goodwin D G, Haile S M. Solid State Ionics, 2006, 177: 2013-2021
[82] Yano M, Tomita A, Sano M, Hibino T. Solid State Ionics, 2007, 177: 3351-3359
[83] Suzuki T, Jasinski P, Petrovsky V, Anderson H U, Dogan F. J. Electrochem. Soc., 2005, 152(3): A527-A531
[84] Hibino T, Hashimoto A, Inoue T, Tokuno J, Yoshida S, Sano M. Science, 2000, 288(16): 2031-2033
[85] Hibino T, Hashimoto A, Inoue T, Tokuno J, Yoshida S, Sano M. J. Electrochem. Soc., 2001, 148(6): A544-A549
[86] Hibino T, Hashimoto A, Yano M, Suzuki M, Yoshida S, Sano M. J. Electrochem. Soc., 2002, 149(2): A133-A136
[87] Suzuki T, Jasinski P, Anderson H U, Dogan F. J. Electrochem. Soc., 2004, 151(10): A1678-A1682
[88] Shao Z, Haile S M. Nature, 2004, 431(9): 170-173
[89] Shao Z, Haile S M, Ahn J, Ronney P D, Zhan Z, Barnett S A. Nature, 2005, 435(9): 795-798
[90] Yano M, Kawai T, Okamoto K, Nagao M, Sano M, Tomita A, Hibino T. J. Electrochem. Soc., 2007, 154(8): B865-B870
[91] Shao Z, Kwak C, Haile S M. Solid State Ionics, 2004, 175: 39-46
[92] Tomita A, Hirabayashi D, Hibino T, Nagao M, Sano M. Electrochem. Solid-State Lett., 2005, 8(1): A63-A65
[93] Buergler B E, Siegrist M E, Gauckler L J. Solid State Ionics, 2005, 176: 1717-1722
[94] Beckel D, Hütter A B, Harvey A, Infortuna A, Muecke U P, Prestat M, Rupp J L M, Gauckler L J. Solid State Ionics, 2007, 173: 325-345
[95] Evans A, Hütter A B, Rupp J L M, Gauckler L J. J. Power Sources, 2009, 194: 119-129
[96] Muecke U P, Beckel D, Bernard A, Hütter A B, Graf S, Infortuna A, Müller P, Rupp J L M, Schneider J, Gauckler L J. Adv. Funct. Mater., 2008, 18: 3158-3168
[97] Huang H, Nakamura M, Su P, Fasching R. J. Electrochem. Soc., 2007, 154(1): B20-B24
[98] Kang S, Su P C, Park Y I, Saito Y, Prinz F B. J. Electrochem. Soc., 2006, 153(3): A554-A559
[99] Shim J H, Chao C C, Huang H, Prinz F B. Chem. Mater., 2007, 19: 3850-3854
[100] Joo J H, Choi G M. J. Power Sources, 2008, 182: 589-593
[101] Su P C, Chao C C, Shim J H, Fasching R, Prinz F B. Nano Lett., 2008, 8(8): 2289-2292

[1] Bingguo Zhao, Yadi Liu, Haoran Hu, Yangjun Zhang, Zezhi Zeng. Electrophoretic Deposition in the Preparation of Electrolyte Thin Films for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2023, 35(5): 794-806.
[2] Yu Xiaoyan, Li Meng, Wei Lei, Qiu Jingyi, Cao Gaoping, Wen Yuehua. Application of Polyacrylonitrile in the Electrolytes of Lithium Metal Battery [J]. Progress in Chemistry, 2023, 35(3): 390-406.
[3] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[4] Qi Qi, Peizhu Xu, Zhidong Tian, Wei Sun, Yangjie Liu, Xiang Hu. Recent Advances of the Electrode Materials for Sodium-Ion Capacitors [J]. Progress in Chemistry, 2022, 34(9): 2051-2062.
[5] Xumin Wang, Shuping Li, Renjie He, Chuang Yu, Jia Xie, Shijie Cheng. Quasi-Solid-State Conversion Mechanism for Sulfur Cathodes [J]. Progress in Chemistry, 2022, 34(4): 909-925.
[6] Xinyang Yue, Jian Bao, Cui Ma, Xiaojing Wu, Yongning Zhou. Three-Dimension Skeleton Supported Lithium Metal Composite Anodes through Thermal Infusing Strategy [J]. Progress in Chemistry, 2022, 34(3): 683-695.
[7] Xiaoqiong Feng, Yunlong Ma, Hong Ning, Shiying Zhang, Changsheng An, Jinfeng Li. Transition Metal Chalcogenide Cathode Materials Applied in Aluminum-Ion Batteries [J]. Progress in Chemistry, 2022, 34(2): 319-327.
[8] Yang Zhang, Min Zhang, Hailei Zhao. Double Perovskite Material as Anode for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2022, 34(2): 272-284.
[9] Qi Huang, Zhenyu Xing. Advances in Lithium Selenium Batteries [J]. Progress in Chemistry, 2022, 34(11): 2517-2539.
[10] Long Chen, Shaobo Huang, Jingyi Qiu, Hao Zhang, Gaoping Cao. Polymer Electrolyte/Anode Interface in Solid-State Lithium Battery [J]. Progress in Chemistry, 2021, 33(8): 1378-1389.
[11] Yang Chen, Xiaoli Cui. Titanium Dioxide Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1249-1269.
[12] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[13] Kedi Cai, Shuang Yan, Tianye Xu, Xiaoshi Lang, Zhenhua Wang. Investigation of Electrode Materials for Lithium Ion Capacitor Battery [J]. Progress in Chemistry, 2021, 33(8): 1404-1413.
[14] Wentao Li, Hai Zhong, Yaohua Mai. In-Situ Polymerization Electrolytes for Lithium Rechargeable Batteries [J]. Progress in Chemistry, 2021, 33(6): 988-997.
[15] Guoyong Huang, Xi Dong, Jianwei Du, Xiaohua Sun, Botian Li, Haimu Ye. High-Voltage Electrolyte for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(5): 855-867.
Viewed
Full text


Abstract

Low Temperature Solid Oxide Fuel Cells