中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (0203): 418-429 Previous Articles   Next Articles

• Review •

Cathode Materials for Solid Oxide Fuel Cells Towards Operating at Intermediate-to-Low Temperature Range

Shao Zongping*   

  1. State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry & Chemical Engineering, Nanjing University of Technology, Nanjing 210009, China
  • Received: Revised: Online: Published:
PDF ( 1728 ) Cited
Export

EndNote

Ris

BibTeX

Solid oxide fuel cells (SOFCs) are a type of electrochemical energy conversion devices with high efficiencies and low emissions. The practical application of SOFCs technology would have a great environmental benignity and be beneficial for a sustainable development of the world. The decrease of operation temperature can accelerate the commercialization of SOFCs technology, the key is the development of high performance of cathodes operated at low temperature. In this paper, we mainly have a comprehensive introduction on the progress in developing of novel cathodes for reduced temperature SOFCs, including perovskite-type Ba0.5Sr0.5Co0.8Fe0.2O3-δ, double perovskite-type LnBaCo2O5+δ, other perovskite-type cobalt-based mixed conducting electrodes, non-cobalt-related mixed conducting oxide electrodes, precious metal modified oxide electrodes and nano-structured composite electrodes prepared by infiltration, and specific cathodes for proton-conducting SOFCs. More attentions are paid to the development in our lab within the last five years. The development trend of cathode in SOFCs is proposed.

CLC Number: 

[1] Dollard W J. J. Power Sources, 1992, 37: 133-139
[2] 韩敏芳(Han M F), 彭苏萍(Peng S P). 固体氧化物燃料电池材料及制备(Solid Oxide Fuel Cell Materials and Fabrication). 北京: 科学出版社(Beijing: Science Press), 2004. 7-14
[3] Minh N Q. J. Am. Ceram. Soc., 1993, 76: 563-588
[4] Haile S M. Acta Mater., 2003, 51: 5981-6000
[5] Steele B C H, Heinzel A. Nature, 2001, 414: 345-352
[6] Singhal S C. Solid State Ionics, 2000, 135: 305-313
[7] Yamamoto O. Electrochim. Acta, 2000, 45: 2423-2435
[8] Badwal S P S, Foger K. Ceram. Int., 1996, 22: 257-265
[9] Holtappels P, Vogt U, Graule T. Adv. Eng. Mater., 2005, 7: 292-302
[10] Alcaide F, Cabot P L, Brillas E. J. Power Sources, 2006, 153: 47-60
[11] Adler S B. Chem. Rev., 2004, 104: 4791-4843
[12] Fleig J. Annu. Rev. Mater. Res., 2003, 33: 361-382
[13] Goodenough J B. Annu. Rev. Mater. Res., 2003, 33: 91-128
[14] Brandon N P, Skinner S, Steele B C H. Annu. Rev. Mater. Res., 2003, 33: 183-213
[15] Perednis D, Gauckler L J. Solid State Ionics, 2004, 166: 229-239
[16] Huang H, Nakamura M, Su P C, Fasching R, Saito Y, Prinz F B. J. Electrochem. Soc., 2007, 154: B20-B24
[17] Leng Y J, Chan S H, Jiang S P, Khor K A. Solid State Ionics, 2004, 170: 9-15
[18] Leng Y J, Chan S H, Khor K A, Jiang S P. Int. J. Hydrogen Energy, 2004, 29: 1025-1033
[19] Sammes N M, Du Y, Bove R. J. Power Sources, 2005, 145: 428-434
[20] Kim S D, Hyun S H, Moon J, Kim J H, Song R K. J. Power Sources, 2005, 139: 67-72
[21] Shao Z P, Haile S M. Nature, 2004, 431: 170-173
[22] Kim G, Wang S, Jacobson A J, Chen C L, Reimus L, Brodersen P, Mims C A. Appl. Phys. Lett., 2006, 88: art. no. 024103
[23] Kim J H, Manthiram A. J. Electrochem. Soc., 2008, 155: B385-B390
[24] Kim J H, Prado F, Manthiram A. J. Electrochem. Soc., 2008, 155: B1023-B1028
[25] Shao Z P, Yang W, Cong Y, Dong H, Tong J H, Xiong G X. J. Mem. Sci., 2000, 172: 177-188
[26] Shao Z P, Dong H, Xiong G X, Gong Y, Yang W S. J. Mem. Sci., 2001, 183: 181-192
[27] Shao Z P, Xiong G X, Dong H, Yang W S, Lin L W. Sep. Purif. Technol., 2001, 25: 97-116
[28] Shao Z P, Xiong G X, Tong J H, Dong H, Yang W S. Sep. Purif. Technol., 2001, 25: 419-429
[29] Zeng P Y, Chen Z H, Zhou W, Gu H X, Shao Z P, Liu S M. J. Mem. Sci., 2007, 291: 148-156
[30] Ai N, Jiang S P, Lu Z, Chen K F, Su W H. J. Electrochem. Soc., 2010, 157: B1033-B1039
[31] Magnone E. J. Fuel Cell Sci. Tech., 2010, 7: art. no. 064001
[32] Leo A, Liu S M, da Costa J C D. Int. J. Greenhouse Gas Control, 2009, 3: 357-367
[33] Baumann S, Schulze-Kuppers F, Roitsch S, Betz M, Zwick M, Pfaff E M, Meulenberg W A, Mayer J, Stver D. J. Mem. Sci., 2010, 359: 102-109
[34] Baumann F S, Fleig J, Habermeier H U, Maier J. Solid State Ionics, 2006, 177: 3187-3191
[35] Bucher E, Egger A, Ried P, Sitte W, Holtappels P. Solid State Ionics, 2008, 179: 1032-1035
[36] Lai W, Haile S M. Phys. Chem. Chem. Phys., 2008, 10: 865-883
[37] Lee S, Lim Y, Lee E A, Hwang H J, Moon J W. J. Power Sources, 2006, 157: 848-854
[38] Wang L, Merkle R, Maier J. J. Electrochem. Soc., 2010, 157: B1802-B1808
[39] Liu Q L, Khor K A, Chan S H. J. Power Sources, 2006, 161: 123-128
[40] McIntosh S, Vente J F, Haije W G, Blank D H A, Bouwmeester H J M. Solid State Ionics, 2006, 177: 1737-1742
[41] Ovenstone J, Jung J I, White J S, Edwards D D, Misture S T. J. Solid State Chem., 2008, 181: 576-586
[42] Pena-Martinez J, Marrero-Lopez D, Ruiz-Morales J C, Buergler B E, Núez P, Gauckler L J. Solid State Ionics, 2006, 177: 2143-2147
[43] Pena-Martinez J, Marrero-Lopez D, Ruiz-Morales J C, Buergler B E, Núez P, Gauckler L J. J. Power Sources, 2006, 159: 914-921
[44] Wang L, Merkle R, Maier J, Acartürk T, Starke U. Appl. Phys. Lett., 2009, 94: art. no. 071908
[45] Chen Z H, Ran R, Zhou W, Shao Z P, Liu S M. Electrochim. Acta, 2007, 52: 7343-7351
[46] Martynczuk J, Arnold M, Wang H, Caro J, Feldhoff A. Adv. Mater., 2007, 19: 2134-2140
[47] Pena-Martinez J, Marrero-Lopez D, Perez-Coll D, Ruiz-Morales J C, Núez P. Electrochim. Acta, 2007, 52: 2950-2958
[48] McIntosh S, Vente J F, Haije W G, Blank D H A, Bouwmeester H J M. Chem. Mater., 2006, 18: 2187-2193
[49] Jung J I, Misture S T, Edwards D D. J. Electroceramics, 2010, 24: 261-269
[50] Yan A Y, Bin L, Dong Y L, Tian Z J, Wang D Z, Cheng M J. Appl.Catal. B, 2008, 80: 24-31
[51] Yang Z, Harvey A S, Gauckler L J. Scr. Mater., 2009, 61: 1083-1086
[52] Duan Z S, Yang M, Yan A, Hou Z F, Dong Y L, Chong Y, Cheng M J, Yang W S. J. Power Sources, 2006, 160: 57-64
[53] Lim Y H, Lee J, Yoon J S, Kim C E, Hwang H J. J. Power Sources, 2007, 171: 79-85
[54] Lin Y, Ran R, Zheng Y, Shao Z P, Jin W Q, Xu N P, Ahn J. J. Power Sources, 2008, 180: 15-22
[55] Li S, Lü Z, Ai N, Chen K F, Su W H. J. Power Sources, 2007, 165: 97-101
[56] Wang K, Ran R, Zhou W, Gu H X, Shao Z P, Ahn J. J. Power Sources, 2008, 179: 60-68
[57] Zhang C M, Zheng Y, Ran R, Shao Z P, Jin W Q, Xu N P, Ahn J. J. Power Sources, 2008, 179: 640-648
[58] Zhou W, Shao Z P, Ran R, Zeng P Y, Gu H X, Jin W Q, Xu N P. J. Power Sources, 2007, 168: 330-337
[59] Zhou W, Shao Z P, Ran R, Chen Z H, Zeng P Y, Gu H X, Jin W Q, Xu N P. Electrochim. Acta, 2007, 52: 6297-6303
[60] Kostogloudis G C, Ftikos C. Solid State Ionics, 1999, 126: 143-151
[61] Mineshige A, Izutsu J, Nakamura M, Nigaki K, Abe J, Kobune M, Fujii S, Yazawa T. Solid State Ionics, 2005, 176: 1145-1149
[62] Hansen K K, Hansen K V. Solid State Ionics, 2007, 178:1379-1384
[63] Doshi R, Richard V L J, Carter D, Wang X P, Michael K. J. Electrochem. Soc., 1999, 146: 1273-1278
[64] Hatchwell C, Bonanos N, Mogensen M. Solid State Ionics, 2004, 167: 349-354
[65] Sevenson J, Armstrong T, Pederson L, Li J, Lewinsohn C A, Baskaran S. Solid State Ionics, 1998, 113/115: 571-583
[66] Zhou W, Ran R, Shao Z P, Jin W Q, Xu N P. J. Power Sources, 2008, 182: 24-31
[67] Ge L, Zhou W, Ran R, Liu S M, Shao Z P, Jin W Q, Xu N P. J. Mem. Sci., 2007, 306: 318-328
[68] Ge L, Ran R, Zhang K, Liu S M, Shao Z P. J. Mem. Sci., 2008, 318: 182-190
[69] Zhou W, Ran R, Shao Z P, Zhuang W, Jia J, Gu H X, Jin W Q, Xu N P. Acta Mater., 2008, 56: 2687-2698
[70] Zhou W, Ran R, Shao Z P. J. Power Sources, 2009, 192: 231-246
[71] Jacobson A J. Chem. Mater., 2010, 22: 660-674
[72] Taskin A A, Lavrov A N, Ando Y. Appl. Phys. Lett., 2005, 86: art. no. 091910
[73] Zhang K, Ge L, Ran R, Shao Z P, Liu S M. Acta Mater., 2008, 56: 4876-4889
[74] Chen D J, Ran R, Shao Z P. J. Power Sources, 2010, 195: 4667-4675
[75] Zhu C J, Liu X M, Yi C S, Pei L, Wang D J, Yan D T, Yao K G, Lü T Q, Su W H. J. Power Sources, 2010, 195: 3504-3507
[76] Zhou Q J, Wang F, Shen Y, He T M. J. Power Sources, 2010, 195: 2174-2181
[77] Chen D J, Ran R, Shao Z P. J. Power Sources, 2010, 195: 7187-7195
[78] Tarancon A, Pena-Martinez J, Marrero-Lopez D, Morata A, Ruiz-Morales J C, Núez P. Solid State Ionics, 2008, 179: 2372-2378
[79] Zhou Q J, He T M, He Q, Ji Y. Electrochem. Commun., 2009, 11: 80-83
[80] Kim J H, Cassidy M, Irvine J T S, Bae J. J. Electrochem. Soc., 2009, 156: B682-B689
[81] Ralph J M, Schoeler A C, Krumpelt M. J. Mater. Sci., 2001, 36: 1161-1172
[82] Orera A, Slater P R. Chem. Mater., 2010, 22: 675-690
[83] Kim J H, Manthiram A. Electrochim. Acta, 2009, 54: 7551-7557
[84] Zhao F, Wang S W, Brinkman K, Chen F L. J. Power Sources, 2010, 195: 5468-5473
[85] Zhou Q J, Zhang Y C, Shen Y, He T M. J. Electrochem. Soc., 2010, 157: B628-B632
[86] Wei B, Lü Z, Jia D C, Huang X Q, Zhang Y H, Su W H. Int. J. Hydrogen Energy, 2010, 35: 3775-3782
[87] Nian Q, Zhao L, He B B, Lin B, Peng R R, Meng G Y, Liu X Q. J. Alloys Compd., 2010, 492: 291-294
[88] Kim J H, Cassidy M, Irvine J T S, Bae J. Chem. Mater., 2010, 22: 883-892
[89] Ding H P, Xue X J. J. Power Sources, 2010, 195: 4139-4142
[90] Skinner S J. Int. J. Inorg. Mater., 2001, 3: 113-121
[91] Rossignol C, Ralph J M, Bae J M, Vaughey J T. Solid State Ionics, 2004, 175: 59-61
[92] James M, Cassidy D, Goossens D J, Withers R L. J. Solid State Chem., 2004, 177: 1886-1895
[93] Lee T H, Yang Y L, Jacobson A J, Abeles B, Milner S. Solid State Ionics, 1997, 100: 87-94
[94] Sunarso J, Motuzas J, Liu S M, da Costa J C D. J. Membr. Sci. 2010, 361: 120-125
[95] Nagai T, Ito W, Sakon T. Solid State Ionics, 2007, 177: 3433-3444
[96] Zhou W, Shao Z P, Ran R, Cai R. Electrochem. Commun., 2008, 10: 1647-1651
[97] Zhou W, Shao Z P, Ran R,Jin W Q, Xu N P. Chem. Commun., 2008, 44: 5791-5793
[98] Zhang K, Ran R, Shao Z P, Zhu Z H, Jin Y G, Liu S M. Ceram. Int., 2010, 36: 635-641
[99] Zeng P Y, Ran R, Chen Z H, Zhou W, Gu H X, Shao Z P, Liu S M. J. Alloys Compd., 2008, 455: 465-470
[100] Zeng P Y, Shao Z P, Liu S M, Xu Z P. Sep. Purif. Technol., 2009, 67: 304-311
[101] Zhou W, Jin W Q, Zhu Z H, Shao Z P. Int. J. Hydrogen Energy, 2010, 35: 1356-1366
[102] Huang C, Chen D J, Lin Y, Ran R, Shao Z P. J. Power Sources, 2010, 195: 5176-5184
[103] Lin Y, Ran R, Chen D J, Shao Z P. J. Power Sources, 2010, 195: 4700-4703
[104] Tarancon A, Burriel M, Santiso J, Skinner S J, Kilner J A. J. Mater. Chem., 2010, 20: 3799-3813
[105] Yaremchenko A A, Kharton V V, Patrakeev M V, Frade J. J. Mater. Chem., 2003, 13: 1136-1144
[106] Zhao F, Wang X F, Wang Z Y, Peng R R, Xia C R. Solid State Ionics, 2008, 179: 1450-1453
[107] Aguadero A, Alonso J A, Esudero M J, Daza L. Solid State Ionics, 2008, 179: 393-400
[108] Tsipis E V, Naumovich E N, Shaula A L, Patrakeev M V, Waerenborgh J C, Kharton V V. Solid State Ionics, 2007, 179: 57-60
[109] Mauvy F, Lalanne C, Bassat J M, Grenier J C, Zhao H, Huo L, Stevens P. J. Electrochem. Soc., 2006, 153: A1547-A1553
[110] Simner S P, Bonnett J F, Canfield N L, Meinhardt K D, Sprenkle V L, Stevenson J W. Electrochem. Solid-State Lett., 2002, 5: A173-A175
[111] Simner S, Anderson M, Bonnett J, Stevenson J. Solid State Ionics, 2004, 175: 79-81
[112] Coffey G W, Hardy J, Pedersen L R, Rieke P, Thomsen E, Walpole M. Solid State Ionics, 2003, 158: 1-9
[113] Coffey G W, Hardy J, Pedersen L R, Rieke P, Thomsen E. Electrochem. Solid-State Lett., 2003, 6: A121-A124
[114] Tsipis E V, Kharton V V. J. Solid State Electrochem., 2008, 12: 1039-1060
[115] Bebelis S, Kournoutis V, Mai A, Tietz F. Solid State Ionics, 2008, 179: 1080-1084
[116] Wang H H, Tablet C, Feldhoff A, Caro J. Adv. Mater., 2005, 17: 1785-1788
[117] Efimov K, Halfer T, Kuhn A, Heitjans P, Caro J, Feldhoff A. Chem. Mater., 2010, 22: 1540-1544
[118] Teraoka Y, Shimokawa H, Kang C Y, Kusaba H, Sasaki K. Solid State Ionics, 2006, 177: 2245-2248
[119] Wei B, Lu Z, Huang X Q, Liu M L, Li N, Su W H. J. Power Sources, 2008, 176: 1-8
[120] Tao Z T, Bi L, Zhu Z W, Liu W. J. Power Sources, 2009, 194: 801-804
[121] Liang F L, Chen J, Li J, Jiang S P, He T M, Pu J, Li J. Electrochem. Commun., 2008, 10: 42-46
[122] Liang F L, Chen J, Jiang S P, Chi B, Pu J, Li J. Electrochem. Solid-State Lett., 2008, 11: B213-B216
[123] Liang F L, Chen J, Jiang S P, Wang F Z, Chi B, Pu J, Li J. Fuel Cells, 2009, 9: 636-642
[124] Chen J, Liang F L, Chi B, Pu J, Jiang S P, Li J. J. Power Sources, 2009, 194: 275-280
[125] Liang F L, Chen J, Chi B, Pu J, Jiang S P, Li J. J. Power Sources, 2011, 196: 153-158
[126] Liang F L, Chen J, Jiang S P, Chi B, Pu J, Li J. Electrochem. Commun., 2009, 11: 1048-1051
[127] 梁凤丽(Liang F L). 华中科技大学博士学位论文(Doctoral Dissertation of Huazhong University of Science & Technology), 2009
[128] Zhou W, Ran R, Shao Z P, Cai R, Jin W Q, Xu N P, Ahn J. Electrochim. Acta, 2008, 53: 4370-4380
[129] Zhou W, Ran R, Cai R, Shao Z P, Jin W Q, Xu N P. J. Power Sources, 2009, 186: 244-251
[130] 邵宗平(Shao Z P), 周嵬(Zhou W), 冉然(Ran R), 高冬梅(Gao D M), 金万勤(Jin W Q). CN 200810156129.6, 2008
[131] Sholklapper T Z, Kurokawa H, Jacobson C P, Visco S J, de Jonghe L C. Nano Lett., 2007, 7: 2136-2141
[132] Armstrong T J, Rich J G. J. Electrochem. Soc., 2006, 153: A515-A520
[133] Huang Y, Vohs J M, Gorte R J. Electrochem. Solid-State Lett., 2006, 9: A237-A240
[134] He H P, Huang Y Y, Regal J, Boaro M, Vohs J M, Gorte R J. J. Am. Ceram. Soc., 2004, 87: 331-336
[135] Jiang S P. Mat. Sci. Eng. A, 2006, 418: 199-210
[136] Vohs J M, Gorte R J. Adv. Mater., 2009, 21: 943-956
[137] Jiang Z Y, Xia C R, Chen F L. Electrochim. Acta, 2010, 55: 3595-3605
[138] Kreuer K D. Annu. Rev. Mater. Res., 2003, 33: 333-359
[139] Ni M, Leung D Y C, Leung M K H. J. Power Sources, 2008, 183: 133-142
[140] Tolchard J, Grande T. J. Solid State Chemistry, 2007, 180: 2808-2815
[141] Lin Y, Ran R, Zhang C M, Cai R, Shao Z P. J. Phys. Chem. A, 2010, 114: 3764-3772
[142] Yang L, Zuo C D, Wang S Z, Cheng Z, Liu M L. Adv. Mater., 2008, 20: 3280-3283
[143] Lin Y, Ran R, Shao Z P. Inter. J. Hydrogen Energy, 2010, 35: 8281-8288
[144] Hibino T, Hashimoto A, Suzuki M, Sano M. J. Electrochem. Soc., 2002, 149: A1503-A1508
[145] He F, Song D, Peng R R, Meng G Y, Yang S F. J. Power Sources, 2010, 195: 3359-3364
[146] Ding H P, Lin B, Liu X Q, Meng G Y. Electrochem. Commun., 2008, 10: 1388-1391
[147] Ling Y H, Zhang X Z, Wang S L, Zhao L, Lin B, Liu X Q. J. Power Sources, 2010, 195: 7042-7045
[148] Ding H P, Xue X J. J. Power Sources, 2010, 195: 7038-7041

[1] Chao Ji, Tuo Li, Xiaofeng Zou, Lu Zhang, Chunjun Liang. Two-Dimensional Perovskite Photovoltaic Devices [J]. Progress in Chemistry, 2022, 34(9): 2063-2080.
[2] Qi Qi, Peizhu Xu, Zhidong Tian, Wei Sun, Yangjie Liu, Xiang Hu. Recent Advances of the Electrode Materials for Sodium-Ion Capacitors [J]. Progress in Chemistry, 2022, 34(9): 2051-2062.
[3] Qianqian Fan, Lu Wen, Jianzhong Ma. Lead-Free Halide Perovskite Nanocrystals: A New Generation of Photocatalytic Materials [J]. Progress in Chemistry, 2022, 34(8): 1809-1814.
[4] Senlin Tang, Huan Gao, Ying Peng, Mingguang Li, Runfeng Chen, Wei Huang. Non-Radiative Recombination Losses and Regulation Strategies of Perovskite Solar Cells [J]. Progress in Chemistry, 2022, 34(8): 1706-1722.
[5] Xumin Wang, Shuping Li, Renjie He, Chuang Yu, Jia Xie, Shijie Cheng. Quasi-Solid-State Conversion Mechanism for Sulfur Cathodes [J]. Progress in Chemistry, 2022, 34(4): 909-925.
[6] Yang Zhang, Min Zhang, Hailei Zhao. Double Perovskite Material as Anode for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2022, 34(2): 272-284.
[7] Xiaoqiong Feng, Yunlong Ma, Hong Ning, Shiying Zhang, Changsheng An, Jinfeng Li. Transition Metal Chalcogenide Cathode Materials Applied in Aluminum-Ion Batteries [J]. Progress in Chemistry, 2022, 34(2): 319-327.
[8] Zehao Hu, Ting Chen, Yanqiao Xu, Weihui Jiang, Zhixiang Xie. Surface Coating Strategy: From Improving the Luminescence Stability to Lighting and Display Applications of All-Inorganic Cesium Lead Halide Perovskite Nanocrystals [J]. Progress in Chemistry, 2021, 33(9): 1614-1626.
[9] Junxian Hong, Xun Zhu, Lei Ge, Mingchuan Xu, Wenzhen Lv, Runfeng Chen. The Synthesis and Applications of CsPbX3(X = Cl, Br, I) Nanocrystals [J]. Progress in Chemistry, 2021, 33(8): 1362-1377.
[10] Kedi Cai, Shuang Yan, Tianye Xu, Xiaoshi Lang, Zhenhua Wang. Investigation of Electrode Materials for Lithium Ion Capacitor Battery [J]. Progress in Chemistry, 2021, 33(8): 1404-1413.
[11] Ying Yang, Shupeng Ma, Yuan Luo, Feiyu Lin, Liu Zhu, Xueyi Guo. Multidimensional CsPbX3 Inorganic Perovskite Materials: Synthesis and Solar Cells Application [J]. Progress in Chemistry, 2021, 33(5): 779-801.
[12] Yusen Ding, Pu Zhang, Hong Li, Wenhuan Zhu, Hao Wei. Research Status and Prospect of Li-Se Batteries [J]. Progress in Chemistry, 2021, 33(4): 610-632.
[13] Shihao Zhou, Xianwen Wu, Yanhong Xiang, Ling Zhu, Zhixiong Liu, Caixian Zhao. Manganese-Based Cathode Materials for Aqueous Zinc Ion Batteries [J]. Progress in Chemistry, 2021, 33(4): 649-669.
[14] Ying Yang, Yuan Luo, Shupeng Ma, Congtan Zhu, Liu Zhu, Xueyi Guo. Advances of Electron Transport Materials in Perovskite Solar Cells: Synthesis and Application [J]. Progress in Chemistry, 2021, 33(2): 281-302.
[15] Xiaojing Li, Yonghong Li, Fuhang Yu, Weiyan Qi, Ye Jiang, Qianwen Lu. Catalysts for Removal of Xylene by Catalytic Oxidation [J]. Progress in Chemistry, 2021, 33(12): 2203-2214.