中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (0203): 401-409 Previous Articles   Next Articles

Special Issue: 锂离子电池

• Review •

Safety Performance of Lithium-Ion Battery

Wu Kai1,2*, Zhang Yao2, Zeng Yuqun2, Sun Shigang1   

  1. 1. School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240,China;
    2. Dongguan Amperex Technology Limited, Dongguan 523808, China
  • Received: Revised: Online: Published:
PDF ( 5029 ) Cited
Export

EndNote

Ris

BibTeX

Application of lithium ion battery (LIB) has been widely extended as its energy density is improved and its cost is reduced. Especially in recent years, significant attention has been paid to application of LIB in electric vehicles and energy storage. However, safety performance of LIB is considered as one of the major barriers which impede the expansion of these application fields. Since safety performance of LIB is fundamentally determined by thermal stability of materials for lithium-ion battery, this paper reviews recent research progress in this field. Among all of the safety tests, overcharge, hot box, nail penetration, crush and internal short are usually considered to be critical ones. This paper discusses major factors influencing these safety tests based on research results obtained in the authors'group. This paper also summarizes state-of-the-art approaches to improve safety performance of LIB in terms of battery materials, cell design and manufacturing.

CLC Number: 

[1] 胡广侠(Hu G X), 谢晶莹(Xie J Y). 电化学(Electro-chemistry) 2002, 8(3): 245-250
[2] 王静(Wang J), 余仲宝(Yu Z B), 初旭光(Chu X G), 万新华(Wan X H), 刘庆国(Liu Q G). 电池(Battery Bimonthly), 2003, 33(6): 388-391
[3] Spotnitz R, Franklin J. J. Power Sources, 2003, 113: 81-100
[4] 王青松(Wang Q S), 孙金华(Sun J H), 陈思凝(Chen S N), 姚晓林(Yao X L), 陈春华(Chen C H), 电池(Battery Bimonthly), 2005, 35(3): 240-241
[5] 唐致远(Tang Z Y), 陈玉红(Chen Y H), 卢星河(Lu X H), 谭才渊(Tan C Y). 化学进展(Progress in Chemistry), 2006, 36(1): 74-76
[6] Balakrishnan P G, Ramesh R, Prem K T. J. Power Sources, 2006, 155: 401-414
[7] Du Pasquier A, Disma F, Bowmer T, Gozdz A S, Amatucci G, Tarascon J M. J. Electrochem. Soc., 145(2), 1998: 472-477
[8] Zhang Z, Fouchard D, Rea J R. J. Power Sources, 1998, 70(1): 16-20
[9] Maleki H, Deng G, Anani A. J. Electrochem. Soc., 1999, 146(9): 3224-3229
[10] Richard M N, Dahn J R. J. Electrochem. Soc., 1999, 146 (6): 2068-2077
[11] MacNeil D D, Larcher D, Dahn J R. J. Electrochem. Soc., 1999, 146(10): 3596-3602
[12] Andersson A M, Herstedt M, Bishop A G. Electrochim. Acta, 2002, 47: 1885-1898
[13] Roth E P, Doughty D H, Franklin J. J. Power Sources, 2004, 134: 222-234
[14] Jiang J W, Dahn J R. Electrochim. Acta, 2004, 49: 4599-4604
[15] Watanabe I, Yamaki J. J. Power Sources, 2006, 153: 402-404
[16] Yang H, Shen X D. J. Power Sources, 2007, 167: 515-519
[17] Biensan P, Simon B, Peres J P. J. Power Sources, 1999, 81/82: 906-912
[18] Dahn J R, Fuller E W, Obrovac M, von Sacken U. Solid State Ionics, 1994, 69(3/4): 265-270
[19] Veluchamy A, Doh C H, Kim D H, Lee J H, Shin H M, Jin B S, Kim H S, Moon S I. J. Power Sources, 2009, 189: 855-858
[20] MacNeil D D, Dahn J R. J. Electrochem. Soc., 2001, 148(11): A1211-A1215
[21] Wang Q S, Sun J H, Chen D L, Chen C H. J. Alloys Comp., 2009, 468: 477-481
[22] Arai H, Tsuda M, Saito K, Hayashi M, Sakurai Y. J. Electrochem. Soc., 2002, 149(4): A401-A406
[23] Venkatachalapathy R, Lee C W, Lu W Q, Prakash J. Electrochem. Comm., 2000, 2: 104-107
[24] Belharouak I, Vissers D, Amine K. J. Electrochem. Soc., 2006, 153(11): A2030-A2035
[25] Yoon W S, Balasubramanian M, Yang X Q, McBreen J, Hanson J. Electrochem. Solid-State Lett., 2005, 8(2): A83-A86
[26] Yoon W S, Hanson J, McBreen J, Yang X Q. Electrochem. Comm., 2006, 8: 859-862
[27] Belharouak I, Lu W Q, Liu Jun, Vissers D, Amine K. J. Power Sources, 2007, 174: 905-909
[28] Nam K W, Yoon W S, Yang X Q. J. Power Sources, 2009, 189: 515-518
[29] Jiang J W, Dahn J R. Electrochem. Comm., 2004, 6: 724-728
[30] Xiang H F, Wang H, Chen C H, Ge X W, Guo S, Sun J H, Hu W Q. J. Power Sources, 2009, 191: 575-581
[31] Sun Y K, Myung S T, Park B C, Prakash J, Belharouak I, Amine K. Nat. Mater., 2009, 8: 320-324
[32] Li C, Zhang H P, Fu L J, Liu H, Wu Y P, Rahm E, Holze R, Wu H Q. Electrochim. Acta, 2006, 51(19): 3872-3883
[33] Botte G G, White R E, Zhang Z M. J. Power Sources, 2001, 97/98: 570-575
[34] Kawamura T, Kimura A, Egashira M, Okada S,Yamaki J I. J. Power Sources, 2002, 104(2): 260-264
[35] Gnanaraj J S, Zinigrad E, Asraf L, Gottlieb H E, Sprecher M, Schmidt M, Geissler W, Aurbach D. J. Electrochem. Soc., 2003, 150(11): A1533-A1537
[36] Ravdel B, Abraham K M, Gitzendanner R, DiCarlo J, Lucht B, Campion C. J. Power Sources, 2003, 119/121: 805-810
[37] Campion C L, Li W T, Lucht B L. J. Electrochem. Soc., 2005, 152(12): A2327-A2334
[38] Wang X M, Yasukawa E, Kasuya S. J. Electrochem. Soc., 2001, 148(10): A1058-A1065
[39] Wang X M, Yasukawa E, Kasuya S. J. Electrochem. Soc., 2001, 148(10): A1066-A1071
[40] Xu K, Ding M S, Zhang S. J. Electrochem. Soc., 2003, 150: A161-A169
[41] Zhang S, Xu K, Jow T R. J. Power Source, 2003, 113: 166-172
[42] Chen S Y, Wang Z X, Zhao H L, Qiao H W, Luan H L, Chen L Q. J. Power Sources, 2009, 187(1): 229-232
[43] Achiha T, Nakajima T, Ohzawa Y, Koh M, Yamauchi A, Kagawa M, Aoyama H. J. Electrochem. Soc., 2010, 157(6): A707-A712
[44] Ohsaki T, Kishi, Kuboki T, Takami N, Shimura N, Sato Y, Sekino M, Satoh A. J. Power. Sources, 2005, 146: 97-100
[45] Tobishima S, Takei K, Sakurai Y, Yamaki J. J Power Sources,2000,90(2):188-195
[46] Leising R A, Palazzo M J, Takeuchi E S, Takeuchi K J. J. Power Sources, 2001, 97/98: 681-683
[47] Zeng Y Q, Wu K, Wang D Y, Wang Z X, Chen L Q. J. Power Sources, 2006, 160: 1302-1307
[48] Kong W H, Li H, Huang X J, Chen L Q. J. Power Sources, 2005, 142: 285-291
[49] Kim J S, Noh M, Cho J. J. Power Sources, 2006, 153: 345-349
[50] Kise M, Yoshioka S, Kuriki H. J. Power Sources, 2007, 174(2): 861-866
[51] Chen G, Richardson T S. Electrochem. Solid State Lett., 2004, 7(2): A23-A26
[52] Thomas-Alyea K E, Newman J, Chen G Y, Riohardson T J. J. Electrochem. Soc., 2004, 151(4): A509-A521
[53] 艾新平(Ai X P), 林聪(Lin C), 廖钦林(Liao Q L), 刘秉东(Liu B D), 杨汉西(Yang H X), 武汉大学学报(理学版) (J. Wuhan Univ. (Nat. Sci. Ed.)), 2006, 52(2): 149-153
[54] Cha C S, Ai X P, Yang H X. J. Power Sources, 1995, 54(2): 255-258
[55] Chen J, Buhrmester C, Dahn J R. Electrochem. Solid-State Lett., 2005, 8(1): A59-A62
[56] Xiao L F, Ai X P, Cao Y L. Electrochim. Acta, 2004, 49(24): 4189-4196
[57] Chen Z H, Qin Y, Amine K. Electrochim. Acta, 2009, 54(24): 5605-5613
[58] Zhang S S. J. Power Sources, 2007, 164(1): 351-364
[59] Santhanagopalan S, Ramadass P, Zhang Z M. J. Power Sources, 2009, 194: 550-557

[1] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[2] Wei Zhang, Kang Xie, Yunhao Tang, Chuan Qin, Shan Cheng, Ying Ma. Application of Transition Metal Based MOF Materials in Selective Catalytic Reduction of Nitrogen Oxides [J]. Progress in Chemistry, 2022, 34(12): 2638-2650.
[3] Gaojie Yan, Qiong Wu, Linghua Tan. Design, Synthesis and Applications of Nitrogen-Rich Azole-Based Energetic Metal Complexes [J]. Progress in Chemistry, 2021, 33(4): 689-712.
[4] Changhuan Zhang, Nianwu Li, Xiuqin Zhang. Electrode Materials for Flexible Lithium-Ion Battery [J]. Progress in Chemistry, 2021, 33(4): 633-648.
[5] Wei Zhang, Xiaopeng Qi, Sheng Fang, Jianhua Zhang, Bimeng Shi, Juanyu Yang. Effects of Carbon on Silicon-Carbon Composites in Lithium-Ion Batteries [J]. Progress in Chemistry, 2020, 32(4): 454-466.
[6] Xiaohui Ma, Liqun Yang, Shijian Zheng, Qilin Dai, Cong Chen, Hongwei Song. All-Inorganic Perovskite Solar Cells: Status and Future [J]. Progress in Chemistry, 2020, 32(10): 1608-1632.
[7] Zhimin Jiang, Li Wang, Min Shen, Huichuang Chen, Guoqiang Ma, Xiangming He. Electrolyte Additives for Interfacial Modification of Cathodes in Lithium-Ion Battery [J]. Progress in Chemistry, 2019, 31(5): 699-713.
[8] Baodong Zhao, Fulei Gao, Yinglei Wang, Yajing Liu, Bin Chen, Yongfei Pan. Azido Energetic Plasticizers for Gun and Rocket Propellants [J]. Progress in Chemistry, 2019, 31(2/3): 475-490.
[9] Zhenjie Li, Du Zhong, Jie Zhang, Jinwei Chen, Gang Wang, Ruilin Wang. Silicon Nanoparticles/Carbon Composites for Lithium-Ion Battery [J]. Progress in Chemistry, 2019, 31(1): 201-209.
[10] Jiao Lin, Chunwei Liu, Hongbin Cao, Li Li, Renjie Chen, Zhi Sun. Recovery of Spent Lithium Ion Batteries Based on High Temperature Chemical Conversion [J]. Progress in Chemistry, 2018, 30(9): 1445-1454.
[11] Shuaijin Wu, Juanyu Yang, Bing Yu, Sheng Fang, Zhaohui Wu, Bimeng Shi. Nano/Micro Structured Silicon-Based Negative Materials [J]. Progress in Chemistry, 2018, 30(2/3): 272-285.
[12] Ma Guoqiang, Wang Li, Zhang Janjun, Chen Huichuang, He Xiangming, Ding Yuansheng. Lithium-Ion Battery Electrolyte Containing Fluorinated Solvent and Additive [J]. Progress in Chemistry, 2016, 28(9): 1299-1312.
[13] Ming Hai, Ming Jun, Qiu Jingyi, Yu Zhongbao, Li Meng, ZhengJunwei. Lithium-Ion Full Batteries Based on the Anode of Non-Metallic Lithium [J]. Progress in Chemistry, 2016, 28(2/3): 204-218.
[14] Niu Jin, Zhang Su, Niu Yue, Song Huaihe, Chen Xiaohong, Zhou Jisheng. Silicon-Based Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2015, 27(9): 1275-1290.
[15] Wang Qian, Zhang Jingze, Lou Yuwan, Xia Baojia. Characteristic of Gas Evolution in Lithium-Ion Batteries Using An Anode Based on Lithium Titanate [J]. Progress in Chemistry, 2014, 26(11): 1772-1780.
Viewed
Full text


Abstract

Safety Performance of Lithium-Ion Battery