中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (0203): 382-389 Previous Articles   Next Articles

• Review •

Lithium Organic Borate Salt and Sulfite Functional Electrolytes

Chen Renjie1,2, He Zhouying1, Wu Feng1,2*   

  1. 1. Beijing Key Laboratory of Environmental Science and Engineering, School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing 100081, China;
    2. National Development Center of High Technology Green Materials, Beijing 100081, China
  • Received: Revised: Online: Published:
PDF ( 1725 ) Cited
Export

EndNote

Ris

BibTeX

With the rapid development of lithium ion batteries with higher energy density, higher power density and high security, the research of new functional electrolytes has attracted considerable attention in novel materials field for lithium ion batteries. In this paper, the recent research advances of key technologies on the application of lithium salts and additive functional electrolytes in lithium ion batteries are reviewed, especially on the results of our research team focusing on new functional electrolytes based on lithium organic borate salt, such as lithium bis(oxalato)borate and lithium oxalyldifluoroborate , and sulfite additives for the purpose of improving security, temperature adaptability and the compatibility between electrolytes and electrodes of lithium ion batteries. These electrolytes exhibit high thermal stability and good electrochemical properties. Moreover, lithium organic borate salt and sulfite have been investigated as new solid electrolyte interphase (SEI) film-forming materials. The formation of a stable passivating film on the graphite surface is believed to be the reason for the improved cell performance, including cycle life, self-discharge, coulombic efficiency and irreversible capacity. Furthermore, current problems as well as the corresponding research directions are discussed, and the possible application prospects are also proposed.

CLC Number: 

[1] Xu K. Chem. Rev., 2004, 104(10): 4303-4417
[2] Aurbach D, Markovsky B, Salitra G, Markevich E, Talyossef Y, Koltypin M, Nazar L, Ellis B, Kovacheva D. J. Power Sources, 2007, 165: 491-499
[3] 李丽 (Li L), 吴锋 (Wu F), 陈人杰 (Chen R J), 吴生先(Wu S X). 高等学校化学学报 (Chemical Journal of Chinese Universities), 2007, 28: 293-296
[4] Videa M, Xu W, Geil B, Marzke R, Angell C A. J. Electrochem. Soc., 2001, 148(12): A1352-A1356
[5] Sasaki Y, Handa M, Kurashima K, Tonuma T, Usami K. J. Electrochem. Soc., 2001, 148(9): 999-1003
[6] Skaarup S, West K, Yde-Andersen S, Koksbang R. 2nd Asian Meeting on Solid State Ionics (Eds. Chowdari B V, Liu Q G, Chen L Q). Singapore: World Scientific Publisher, 1990. 83
[7] Kita F, Sakata H, Kawakami A, Kamizori H, Sonoda T, Nagashima H, Pavlenko N V, Yagupolskii Y L. J. Power Sources, 2001, 97/98: 581-583
[8] Walker C W, Cox J D, Salomon M. J. Electrochem. Soc., 1995, 143(4): L80-L82
[9] Barthel J, Schmid A, Gores H. J. Electrochem. Soc., 2000, 147(1): 21-24
[10] Xu W, Angell C A. Electrochemical and Solid-State Letters, 2000, 3(8): 366-368
[11] Zhang S S, Xu K, Jow T R. J. Power Sources, 2006, 159: 702-707
[12] Wang S, Qiu W H, Guan Y L. Electrochimica Acta, 2007, 52(15): 4907-4910
[13] Yu B T, Qiu W H, Li F S. J. Power Sources, 2007, 166(2): 499-502
[14] Zhang S S, Angell C A. J. Electrochem. Soc., 1996, 143(12): 4047-4053
[15] 韩景立 (Han J L), 刘国庆 (Liu G Q). 电化学(Electro-chemical), 2000, 6(1): 116-118
[16] Sasaki Y, Handa M, Sekiya S, Kurashima K, Usami K. J. Power Sources, 2001, 97/98: 561-565
[17] 李世友(Li S Y), 马培华 (Ma P H), 崔孝玲 (Cui X L), 伊文涛 (Yi W T). 电池 (Battery), 2008, 38(3): 152-154
[18] Taubert C, Fleischahamer M, Wolhfahrt-Megrens M, Wietelmann U, Bubrmester T. J. Electrochem. Soc., 2010, 157: A721-A728
[19] Panitz J, Wietelmann U, Wachtler M. J. Power Sources, 2006, 153(2): 396-401
[20] 付延鲍 (Fu Y B), 马晓华 (Ma X H), 马若彪 (Ma R B), 陈逸民 (Chen Y M) . 电池 (Battery), 2008, 38(1): 11-13
[21] Yang L, Furczon M M, Xiao A, Lucht B L, Zhang Z, Abraham D P. J. Power Sources, 2010, 195: 1698-1705
[22] Zhang S S. Electrochemistry Communications, 2006, 8: 1423-1428
[23] Zhang S S. J. Power Sources, 2007, 163: 713-718
[24] Gao H Q, Zhang Z A, Lai Y Q, Li J, Liu Y X. J. Cent. South Univ. Technol., 2008, 15: 830-834
[25] Zhang Z A, Chen X J, Li F Q, Lai Y Q, Li J, Liu P, Wang X Y. J. Power Sources, 2010, 195: 7397-7402
[26] Fu M H, Huang K L, Liu S Q. Acta Phys. Chim. Sin., 2009, 25(10): 1985-1990
[27] Fu M H, Huang K L, Liu S Q, Liu J S, Li Y K. J. Power Sources, 2010, 195: 862-866
[28] Gao H Q, Lai Y Q, Zhang Z A, Liu Y X. Acta Phys. Chim. Sin., 2009, 25 (5): 905-910
[29] Zhang S S. J. Power Sources, 2008, 180: 586-590
[30] Arai J, Matsuo A, Fujisaki T, Ozaka K. J. Power Sources, 2009, 193: 851-854
[31] Xue Z M, Zhao J F, Ding J, Chen C H. J. Power Sources, 2010, 195: 853-856
[32] Xue Z M, Ji C Q, Zhou W. J. Power Sources, 2010, 195: 3689-3692
[33] Xu M Q, Xiao A, Li W S, Lucbt B L. J. Electrochem. Soc., 2010, 157: A115-A120
[34] Qin Y, Chen Z H, Liu J. Electrochem. Solid-State Lett., 2010, 13: A11-A14
[35] Tokuda H, Watanabe M. Abstracts of the 42nd Battery Symposium in Japan, 2001
[36] Larush-Asraf L, Biton M, Teller H, Zinigrad E, Aurbach D. J. Power Sources, 2004, 174: 400-407
[37] Nakajima T, Koh-icchi D, Koh M. J. Fluorine Chemistry, 1998, (87): 221-227
[38] Smart M C, Ratnakumar B V, Surampudi S. J. Electrochem. Soc., 1999, (146): 486-492
[39] Wrodnigg G H, Wrodnigg T M, Besenhard J O, Winter M. Electrochemistry Communications, 1999, 3/4: 148-150
[40] Wrodnigg G H, Besenhard J O, Winter M. J. Power Sources, 2001, 97/98: 592-594
[41] Ota H, Sato T, Suzuki H. J. Power Sources, 2001, 97/98: 107-113
[42] Chen R J, Wu F, Li L, Guan Y B, Qiu X P, Chen S, Li Y J, Wu S X. J. Power Sources, 2007, 172: 395-403
[43] 姚万浩(Yao W H), 李劼(Li J), 张忠如(Zhang Z R), 高军(Gao J), 王周成(Wang Z C), 杨勇(Yang Y) . 化学学报(Acta Chimica Sinica), 2009, 67(22): 2531-2535ommunications, 1999, 3/4: 148—150

[40] Wrodnigg G H, Besenhard J O, Winter M. J. Power Sources, 2001, 97/98: 592—594

[41] Ota H, Sato T, Suzuki H. J. Power Sources, 2001, 97/98: 107—113

[42] Chen R J, Wu F, Li L, Guan Y B, Qiu X P, Chen S, Li Y J, Wu S X. J. Power Sources, 2007, 172: 395—403

[43] 姚万浩(Yao W H), 李劼(Li J), 张忠如(Zhang Z R), 高军(Gao J), 王周成(Wang Z C), 杨勇(Yang Y) . 化学学报(Acta Chimica Sinica), 2009, 67(22): 2531—2535

 

[1] Bingguo Zhao, Yadi Liu, Haoran Hu, Yangjun Zhang, Zezhi Zeng. Electrophoretic Deposition in the Preparation of Electrolyte Thin Films for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2023, 35(5): 794-806.
[2] Yu Xiaoyan, Li Meng, Wei Lei, Qiu Jingyi, Cao Gaoping, Wen Yuehua. Application of Polyacrylonitrile in the Electrolytes of Lithium Metal Battery [J]. Progress in Chemistry, 2023, 35(3): 390-406.
[3] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[4] Xumin Wang, Shuping Li, Renjie He, Chuang Yu, Jia Xie, Shijie Cheng. Quasi-Solid-State Conversion Mechanism for Sulfur Cathodes [J]. Progress in Chemistry, 2022, 34(4): 909-925.
[5] Qi Huang, Zhenyu Xing. Advances in Lithium Selenium Batteries [J]. Progress in Chemistry, 2022, 34(11): 2517-2539.
[6] Long Chen, Shaobo Huang, Jingyi Qiu, Hao Zhang, Gaoping Cao. Polymer Electrolyte/Anode Interface in Solid-State Lithium Battery [J]. Progress in Chemistry, 2021, 33(8): 1378-1389.
[7] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[8] Wentao Li, Hai Zhong, Yaohua Mai. In-Situ Polymerization Electrolytes for Lithium Rechargeable Batteries [J]. Progress in Chemistry, 2021, 33(6): 988-997.
[9] Guoyong Huang, Xi Dong, Jianwei Du, Xiaohua Sun, Botian Li, Haimu Ye. High-Voltage Electrolyte for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(5): 855-867.
[10] Yusen Ding, Pu Zhang, Hong Li, Wenhuan Zhu, Hao Wei. Research Status and Prospect of Li-Se Batteries [J]. Progress in Chemistry, 2021, 33(4): 610-632.
[11] Qi Yang, Nanping Deng, Bowen Cheng, Weimin Kang. Gel Polymer Electrolytes in Lithium Batteries [J]. Progress in Chemistry, 2021, 33(12): 2270-2282.
[12] Yi Zhang, Meng Zhang, Yifan Tong, Haixia Cui, Pandeng Hu, Weiwei Huang. Application of Multi-Carbonyl Covalent Organic Frameworks in Secondary Batteries [J]. Progress in Chemistry, 2021, 33(11): 2024-2032.
[13] Qiuyan Liu, Xuefeng Wang, Zhaoxiang Wang, Liquan Chen. Composite Solid Electrolytes with High Contents of Ceramics [J]. Progress in Chemistry, 2021, 33(1): 124-135.
[14] Dong Li, Yuying Zheng, Haoxiong Nan, Yanxiong Fang, Quanbing Liu, Qiang Zhang. Electrolyte for Solid Lithium-Sulfur Batteries with High Safety and High Specific Energy [J]. Progress in Chemistry, 2020, 32(7): 1003-1014.
[15] Deying Mu, Zhu Liu, Shan Jin, Yuanlong Liu, Shuang Tian, Changsong Dai. The Recovery and Recycling of Cathode Materials and Electrolyte from Spent Lithium Ion Batteries in Full Process [J]. Progress in Chemistry, 2020, 32(7): 950-965.