中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (0203): 374-381 Previous Articles   Next Articles

Special Issue: 锂离子电池

• Review •

Investigation of Microscale Lithium Ion Batteries and the Key Materials

Dong Quanfeng1*, Song Jie1, Zheng Mingsen1, Susanne Jacke2, Wolfram Jaegermann2   

  1. 1. State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China;
    2. Surface Science Division, Department of Materials Science, Darmstadt University of Technology, Petersenstr.23, Darmstadt 64287, Germany
  • Received: Revised: Online: Published:
PDF ( 1441 ) Cited
Export

EndNote

Ris

BibTeX

Most low-power electronic and microelectromechanical system (MEMS) devices designed today use conventionally macroscopic external power supplies. This places limits on the functionality of these microdevices in many applications. An alternative solution is to design power sources at a microscale, which can be integrated together with these microdevices on the same chips. We mainly review the work done in our group on developing and studying of solid state microscale lithium ion batteries compatible with microelectronics with respect to the material system employed, the solid state electrolyte-cathode interface, the batteries’ microfabrication process and performance.

CLC Number: 

[1] Koeneman P B, Busch-Vishniac I J, Wood K L. J. Microelectromech. Syst., 1997, 6: 355-362
[2] Guo H, Lal A. Boston Transducers'03: Digest of Technical Papers, Vols 1 and 2, 2003. 36-39
[3] Yen T J, Fang N, Zhang X, Lu G Q, Wang C Y. Applied Physics Letters, 2003, 83: 4056-4058
[4] Fleurial J P, Snyder G J, Ryan M A, Huang C K, Borshchevsky A, Herman J A, Caillat T. Pricm 4: Forth Pacific Rim International Conference on Advanced Materials and Processing, Vols Ⅰ and Ⅱ, 2001. 2937-2940
[5] Dudney N J, Neudecker B J. Current Opinion in Solid State & Materials Science, 1999, 4: 479-482
[6] Chamran F, Yeh Y, Min H S, Dunn B, Kim C J. Journal of Microelectromechanical Systems, 2007, 16: 844-852
[7] Bates J B, Dudney N J, Neudecker B, Ueda A, Evans C D. Solid State Ionics, 2000, 135: 33-45
[8] Neudecker B J, Dudney N J, Bates J B. Journal of the Electrochemical Society, 2000, 147: 517-523
[9] Bates J B, Dudney N J, Neudecker B J, Hart F X, Jun H P, Hackney S A. Journal of the Electrochemical Society, 2000, 147: 59-70
[10] Long J W, Dunn B, Rolison D R, White H S. Chemical Reviews, 2004, 104: 4463-4492
[11] Notten P H L, Roozeboom F, Niessen R A H, Baggetto L. Advanced Materials, 2007, 19: 4564-4567
[12] Baggetto L, Niessen R A H, Roozeboom F, Notten P H L. Advanced Functional Materials, 2008, 18: 1057-1066
[13] Liao C L, Lee Y H, Fung K Z. Journal of Alloys and Compounds, 2007, 436: 303-308
[14] Liao C L, Fung K Z. Journal of Power Sources, 2004, 128: 263-269
[15] Lee W H, Son H C, Moon H S, Kim Y I, Sung S H, Kim J Y, Lee J G, Park J W. Journal of Power Sources, 2000, 89: 102-105
[16] Kim Y L, Lee H Y, Jang S W, Lim S H, Lee S J, Baik H K, Yoon Y S, Lee S M. Electrochimica Acta, 2003, 48: 2593-2597
[17] Akai T, Ota H, Namita H, Yamaguchi S, Nomura M. Physica Scripta, 2005, T115: 408-411
[18] Edstrom K, Gustafsson T, Thomas J O. Electrochimica Acta, 2004, 50: 397-403
[19] Liu N, Li H, Wang Z X, Huang X J, Chen L Q. Electrochemical and Solid State Letters, 2006, 9: A328-A331
[20] Laubach S, Laubach S, Schmidt P C, Ensling D, Schmid S, Jaegermann W, Thissen A, Nikolowski K, Ehrenberg H. Physical Chemistry Chemical Physics, 2009, 11: 3278-3289
[21] Jacke S, Song J, Cherkashinin G, Dimesso L, Jaegermann W. Ionics, 2010, 16: 769-775
[22] Aduru S, Contarini S, Rabalais J W. Journal of Physical Chemistry, 1986, 90: 1683-1688
[23] Brückner R, Chun H U, Goretzki H, Sammet M. Journal of Non-Crystalline Solids, 1980, 42: 49-60
[24] Marchand R, Agliz D, Boukbir L, Quemerais A. Journal of Non-Crystalline Solids, 1988, 103: 35-44
[25] Van Elp J, Wieland J L, Eskes H, Kuiper P, Sawatzky G A. Physical Review B, 1991, 44: 6090-6103
[26] Yu X H, Bates J B, Jellison G E, Hart F X. Journal of the Electrochemical Society, 1997, 144: 524-532
[27] Izumi A, Hirai Y, Tsutsui K, Sokolov N S. Applied Physics Letters, 1995, 67: 2792-2794
[28] Iriyama Y, Kako T, Yada C, Abe T, Ogumi Z. Solid State Ionics, 2005, 176: 2371-2376
[29] Iriyama Y, Kako T, Yada C, Abe T, Ogumi Z. Journal of Power Sources, 2005, 146: 745-748
[30] Iriyama Y, Nishimoto K, Yada C, Abe T, Ogumi Z, Kikuchi K. Journal of the Electrochemical Society, 2006, 153: A821-A825
[31] Song J, Yang X, Zeng S S, Cai M Z, Zhang L T, Dong Q F, Zheng M S, Wu S T, Wu Q H. Journal of Micromechanics and Microengineering, 2009, 19: art. no. 045004
[32] Whitacre J F, West W C, Ratnakumar B V. Journal of the Electrochemical Society, 2003, 150: A1676-A1683

[1] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[2] Senlin Tang, Huan Gao, Ying Peng, Mingguang Li, Runfeng Chen, Wei Huang. Non-Radiative Recombination Losses and Regulation Strategies of Perovskite Solar Cells [J]. Progress in Chemistry, 2022, 34(8): 1706-1722.
[3] Yawei Liu, Xiaochun Zhang, Kun Dong, Suojiang Zhang. Research of Condensed Matter Chemistry on Ionic Liquids [J]. Progress in Chemistry, 2022, 34(7): 1509-1523.
[4] Xiangrui Kong, Jing Dou, Shuzhen Chen, Bingbing Wang, Zhijun Wu. Progress of Synchrotron-Based Research on Atmospheric Science [J]. Progress in Chemistry, 2022, 34(4): 963-972.
[5] Xumin Wang, Shuping Li, Renjie He, Chuang Yu, Jia Xie, Shijie Cheng. Quasi-Solid-State Conversion Mechanism for Sulfur Cathodes [J]. Progress in Chemistry, 2022, 34(4): 909-925.
[6] Minglong Lu, Xiaoyun Zhang, Fan Yang, Lian Wang, Yuqiao Wang. Surface/Interface Modulation in Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 547-556.
[7] Long Chen, Shaobo Huang, Jingyi Qiu, Hao Zhang, Gaoping Cao. Polymer Electrolyte/Anode Interface in Solid-State Lithium Battery [J]. Progress in Chemistry, 2021, 33(8): 1378-1389.
[8] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[9] Wentao Li, Hai Zhong, Yaohua Mai. In-Situ Polymerization Electrolytes for Lithium Rechargeable Batteries [J]. Progress in Chemistry, 2021, 33(6): 988-997.
[10] Suye Lv, Liang Zou, Shouliang Guan, Hongbian Li. Application of Graphene in Neural Activity Recording [J]. Progress in Chemistry, 2021, 33(4): 568-580.
[11] Shumin Cheng, Lin Du, Xiuhui Zhang, Maofa Ge. Application of Langmuir Monolayers in the Investigation of Surface Properties of Sea Spray Aerosols [J]. Progress in Chemistry, 2021, 33(10): 1721-1730.
[12] Luanluan Xue, Huizeng Li, An Li, Zhipeng Zhao, Yanlin Song. Droplet Self-Propulsion Based on Heterogeneous Surfaces [J]. Progress in Chemistry, 2021, 33(1): 78-86.
[13] Sicheng Yuan, Dan Lin, Xiguang Zhang, Huaiyuan Wang. Fabrication and Application of Slippery Liquid Infused Porous Functional Surface [J]. Progress in Chemistry, 2021, 33(1): 87-96.
[14] Hang Jia, Yue Qiao, Yu Zhang, Qingxin Meng, Cheng Liu, Xigao Jian. Interface Modification Strategy of Basalt Fiber Reinforced Resin Matrix Composites [J]. Progress in Chemistry, 2020, 32(9): 1307-1315.
[15] Ruixuan Qin, Guocheng Deng, Nanfeng Zheng. Assembling Effects of Surface Ligands on Metal Nanomaterials [J]. Progress in Chemistry, 2020, 32(8): 1140-1157.