中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (0203): 349-356 Previous Articles   Next Articles

Special Issue: 锂离子电池

• Review •

Interfacial Processes of Lithium Ion Batteries by FTIR Spectroscopy

Li Juntao, Fang Junchuan, Su Hang, Sun Shigang*   

  1. School of Energy Research, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
  • Received: Revised: Online: Published:
PDF ( 2118 ) Cited
Export

EndNote

Ris

BibTeX

Lithium-ion batteries (LIBs) are one of the important electrochemical power sources for low- or zero-emission hybrid electrical and electrical vehicles, energy-efficient cargo ships and locomotives, and aerospace in the modern society. The difficulties in mastering the electrode/electrolyte interface have slowed down the progress of LIBs. Interfacial processes of lithium ion batteries include mainly insertion/extraction of lithium ion, solvation/desolvation of lithium with solvents, formation and variation of solid electrolyte interphase (SEI) layer, and decomposition of electrolyte. Interfacial processes directly affect the efficiency of electrochemical energy conversion and storage, such as the cycling ability, the lifetime and the reversible capacity, as well as the safety issue of lithium ion batteries. The characterization of the interface processes at a molecular level by FTIR spectroscopy is one of the key subjects, as it is helpful for the improvement the performance of lithium ion batteries and development of non-aqueous theory. Recent progresses about the application of FTIR spectroscopy in lithium ion batteries are reviewed. This review put emphasis on: (a) the characterization of chemical composition and variation of SEI layer on cycled or aged electrode materials by ex situ FTIR spectroscopy, and (b) the investigation of decomposition of electrolyte, formation of SEI layer and the insertion/extraction of lithium ion by both in-situ FTIR reflection spectroscopy and in situ FTIR transmission spectroscopy.

CLC Number: 

[1] Scrosati B. Nature, 1995, 373: 557-558
[2] Tarascon J M, Armand M. Nature, 2001, 414: 359-367
[3] Kang B, Ceder G. Nature, 2009, 458: 190-193
[4] Scrosati B, Garche J. J. Power Scours, 2010, 195: 2419-2430
[5] Armand M, Tarascon J M. Nature, 2008, 451: 652-657
[6] Xu K. Chem. Rev., 2004, 104: 4303-4417
[7] Li J T, Swiatowska J, Seyeux A, Huang L, Maurice V, Sun S G. Marcus P. J. Power Source, 2010, 195: 8251-8257
[8] 陈卫(Chen W), 孙世刚(Sun S G). 光谱学与光谱分析(Spectroscopy and Spectral Analysis), 2002, 22: 504-514
[9] Peled E J. Electrochem Soc., 1979, 126: 2047-2051
[10] 庄全超(Zhuang Q C), 徐守东(Xu S D), 邱祥云(Qiu X Y), 崔永丽(Cui Y L), 方亮(Fang L), 孙世刚(Sun S G). 化学进展(Progress in Chemistry), 2010, 22: 1044-1057
[11] 倪江锋(Ni J F), 周恒辉(Zhou H H), 陈继涛(Chen X T), 苏光耀(Su G Y). 化学进展(Progress in Chemistry), 2004, 16: 335-342
[12] Aurbach D, Weissman I, Schechter A. Langmiur, 1996, 12: 3991-4007
[13] Yang C R, Wang Y Y, Wan C C. J. Power Sources, 1998, 72: 66-70
[14] 李君涛(Li J T). 厦门大学博士论文(Doctoral Dissertation of Xiamen University), 2009
[15] Naji A, Ghanbaja J, Humbert B, Willmann P, Billaud D. J. Power Sources, 1996, 63: 33-39
[16] Aurbach D, Markovsky B, Shechter A, Ein-E1i Y. J. Electrochem. Soc., 1996, 143: 3809-3820
[17] Aurbach D, Markovsky B, Rodkin A, Cojocaru M, Levi E, Kim H. J. Electrochim. Acta, 2002, 47: 1899-1911
[18] Lee S B, Pyun S I. Carbon, 2002, 40: 2333-2339
[19] Aurbach D, Markovsky B, Weissman I, Levi E, Ein-Eli Y. Electrochim. Acta, 1999, 45: 67-86
[20] Aurbach D, Zaban A, Ein-Eli Y, Weissman I, Chusid O, Markovsky B, Levi M, Levi E, Schechter A, Granot E. J. Power Source, 1997, 68: 91-98
[21] Zhuang G R V, Xu K, Yang H, Jow T R, Ross P N. J. Phys. Chem. B, 2005, 109: 17567-17573
[22] Chusid O Y, Ein-Ely Y, Aurbach D. J. Power Sources, 1993, 43/44: 47-64
[23] Hu Y S, Kong W H, Li H, Huang X J, Chen L Q. Electrochem. Commun., 2OO4, 6: 126-131
[24] Aurbach D, Granot E. Electrochim. Acta, 1997, 42: 697-718
[25] Li J Z, Li H, Wang Z X, Huang X J, Chen L Q. J. Power Sources, 1999, 81/82: 346-351
[26] Li J T, Maurice V, Swiatowska-Mrowiecka J, Seyeux A, Zanna S, Klein L, Sun S G, Marcus P. Electrochim. Acta, 2009, 54: 3700-3707
[27] Song S W, Baek S W. Electrochim. Acta, 2009, 54: 1312-1318
[28] Li J T, Chen S R, Ke F S, Wei G Z, Huang L, Sun S G. J. Electroanal. Chem., 2010, 694: 171-176
[29] Ostrovskii D, Ronci F, Scrosati B, Jacobsson P. J. Power Sources, 2001, 103: 10-17
[30] Martha S K, Markevich E, Burgel V, Salitra G, Zinigrad E, Markovsky B, Sclar H, Pramovich Z, Heik O, Aurbach D. Exnar I, Buqa H, Drezen T, Semrau G, Schmidt M. Kovacheva D, Saliyski N. J. Power Sources, 2009, 189: 288-296
[31] Kerlau M, Kostecki R. J. Electrochem. Soc., 2006, 153: A1644-A1648
[32] Xu H Y, Xie S, Wang Q Y, Yao X L, Wang Q S, Chen C H. Electrochim. Acta, 2006, 52: 636-642
[33] Wu C, Bai Y, Wu F. J. Power Sources, 2009, 189: 89-94
[34] Bewick A, Kunimatsu K. Surf. Sci., 1980, 101: 131-138
[35] Bewick A, Kunimatsu K, Pons B S. Electrochim. Acta, 1980, 25: 465-468
[36] Sun S G, Christensen P A, Wieckowski A. In-situ Spectroscopic Studies of Adsorption at the Electrode and Electrocatalysis. Amsterdam: Elsevier, 2007. 1-273
[37] Santner H J, Korepp C, Winter M, Besenhard J O, Moller K C. Anal. Bioanal. Chem., 2004, 379: 266-271
[38] Neff H, Lange P, Roe D K, Sass J K. J. Electroanal. Chem., 1983, 150: 513-519
[39] Lange P, Glaw V, Neff H, Piltz E, Sass J K. Vacuum, 1983, 33: 763-766
[40] Ashley K, Pons S. Chem. Rev., 1988, 88: 673-695
[41] Ikezawa Y, Ariga T. Electrochim. Acta, 2007, 52: 2710-2715
[42] Matsui M, Dokko K, Kanamura K. J. Power Sources, 2008, 177: 184-193
[43] Novak P, Goers D, Hardwick L, Holzapfel M, Scheifele W, Ufheil J, Wursig A. J. Power Sources, 2005, 146: 15-20
[44] Li J T, Chen S R, Fan X Y, Huang L, Sun S G. Langmuir, 2007, 23: 13174-13180
[45] Morigaki K. J. Power Sources, 2002, 104: 13-23
[46] Morigaki K, Ohta A. J. Power Sources, 1998, 76: 159-166
[47] Morigaki K. J. Power Sources, 2002, 103: 253-264
[48] Baek S W, Hong S J, Kim D W, Song S W. J. Power Sources, 2009, 189: 660-664
[49] Matsui M, Dokko K, Kanamura K. J. Electrochem. Soc., 2010, 157: A121-A129
[50] Aurbach D, Moshkovich M, Cohen Y, Schechter A. Langmuir, 1999, 15: 2947-2960
[51] Wang Y X, Balbuena P B. Int. J. Quantum Chem., 2005, 102: 724-733
[52] Masia M, Probst M, Rey R. J. Phys. Chem. B, 2004, 108: 2016-2027
[53] Yeager H L, Fedyk J D, Parker R J. J. Phys. Chem., 1973, 77: 2407-2410
[54] Burba C M, Frech R. Electrochim. Acta, 2006, 52: 780-785
[55] Sharabi R, Markevich E, Borgel V, Salitra G, Aurbach D, Semrau G, Schmidt M A, Electrochem. Solid-State Lett., 2010, 13: A32-A35

[1] Quanchao Zhuang, Zi Yang, Lei Zhang, Yanhua Cui. Research Progress on Diagnosis of Electrochemical Impedance Spectroscopy in Lithium Ion Batteries [J]. Progress in Chemistry, 2020, 32(6): 761-791.
[2] Haodeng Chen, Jianxing Xu, Shaomin Ji, Wenjin Ji, Lifeng Cui, Yanping Huo. Application of MOFs Derived Metal Oxides and Composites in Anode Materials of Lithium Ion Batteries [J]. Progress in Chemistry, 2020, 32(2/3): 298-308.
[3] Yun Zhao, Yuqiong Kang, Yuhong Jin, Li Wang, Guangyu Tian, Xiangming He. Silicon-Based and -Related Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2019, 31(4): 613-630.
[4] Yun Zhao, Yuhong Jin, Li Wang, Guangyu Tian, Xiangming He. The Application of Self-Assembled Hierarchical Structures in Lithium-Ion Batteries [J]. Progress in Chemistry, 2018, 30(11): 1761-1769.
[5] Xiujuan Li, Yunhe Cao, Kang Hua, Chang Wang, Weilin Xu, Dong Fang. Characterization and Modification Method of Oxovanadium-Based Electrode Materials [J]. Progress in Chemistry, 2017, 29(10): 1260-1272.
[6] Ying Shi, Lei Wen, Minjie Wu, Feng Li. Applications of the Carbon Materials on Lithium Titanium Oxide as Anode for Lithium Ion Batteries [J]. Progress in Chemistry, 2017, 29(1): 149-161.
[7] Chen Jun, Ding Nengwen, Li Zhifeng, Zhang Qian, Zhong Shengwen. Organic Cathode Material for Lithium Ion Battery [J]. Progress in Chemistry, 2015, 27(9): 1291-1301.
[8] Zhang Lingling, Ma Yulin, Du Chunyu, Yin Geping. Research on the High-Voltage Electrolyte for Lithium Ion Batteries [J]. Progress in Chemistry, 2014, 26(04): 553-559.
[9] Hu Jinlin, Yang Qihao, Chen Jing, Wang Taiya, Lin He, Qian Haisheng. Synthesis and Applications of Mesoporous TiO2 Functional Nanomaterials [J]. Progress in Chemistry, 2013, 25(12): 2080-2092.
[10] Han Fei, Lu Anhui, Li Wencui* . Structure Controlled Carbon-Based Materials for Lithium Ion Battery [J]. Progress in Chemistry, 2012, 24(12): 2443-2456.
[11] Zhang Linchao, Chen Chunhua. Electrode Materials for Lithium Ion Battery [J]. Progress in Chemistry, 2011, 23(0203): 275-283.
[12] Wang Zhaoxiang, Chen Liquan, Huang Xuejie. Structural Design and Modification of Cathode Materials for Lithium Ion Batteries [J]. Progress in Chemistry, 2011, 23(0203): 284-301.
[13] Xia Lan, Li Suli, Ai Xinping, Yang Hanxi. Safety Enhancing Methods for Li-Ion Batteries [J]. Progress in Chemistry, 2011, 23(0203): 328-335.
[14] Zhou Yongning, Fu Zhengwen. Nanostructured Thin Film Electrode Materials for Lithium Ion Battery [J]. Progress in Chemistry, 2011, 23(0203): 336-348.
[15] Chen Renjie, He Zhouying, Wu Feng. Lithium Organic Borate Salt and Sulfite Functional Electrolytes [J]. Progress in Chemistry, 2011, 23(0203): 382-389.