中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (0203): 264-274 Previous Articles   Next Articles

Special Issue: 锂离子电池

• Review •

Si-Based Composite Anode Materials for Li-Ion Batteries

Gao Pengfei, Yang Jun*   

  1. School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received: Revised: Online: Published:
PDF ( 6337 ) Cited
Export

EndNote

Ris

BibTeX

Silicon is one of the most attractive anode materials for lithium ion batteries on account of its low discharge potential and the highest theoretical capacity for lithium storage. However, the large volume effect, poor electronic conductivity and incompatibility with the conventional electrolyte hinder its commercial applications. So far, strategies to overcome these hinders include designing the composition and microstructure of silicon active materials to suppress the volume change and improve the conductivity, developing new binders and electrolyte additives and exploring new current collectors and suitable electrode structures. There are mainly two methods to improve the silicon active materials. One is to decrease the scale of active Si domain to nanoscale, the other is to fabricate the composite structures. This paper summarizes the recent progress in silicon based composite materials, including Si-nonmetal composites and Si-metal composites, as well as some researches of our group, and discusses the technological bottlenecks and development trends.

CLC Number: 

[1] Armand M, Tarascon J. Nature, 2008, 451 (7179): 652-657
[2] Boukamp B A, Lesh G C, Huggins R A. J. Electrochem. Soc., 1981, 128 (4): 725-729
[3] Megahed S, Scrosati B. J. Power Sources, 1994, 51 (1/2): 79-104
[4] Huggins R A. J. Power Sources, 1999, 81: 13-19
[5] Ryu J H, Kim J W, Sung Y E, Oh S M. Electrochem. Solid State Lett., 2004, 7 (10): A306-A309
[6] Choi N, Yew K, Kim H, Kim S, Choi W. J. Power Sources, 2007, 172 (1): 404-409
[7] Li H, Huang X, Chen L, Wu Z, Liang Y. Electrochem. Solid State Lett., 1999, 2: 547-549
[8] Ma H, Cheng F, Chen J, Zhao J, Li C, Tao Z, Liang J. Adv. Mater., 2007, 19 (22): 4067-4070
[9] Li H, Huang X J, Chen L Q, Zhou G W, Zhang Z, Yu D P, Mo Y J, Pei N. Solid State Ionics, 2000, 135 (1/4): 181-191
[10] Cui L F, Ruffo R, Chan C K, Peng H, Cui Y. Nano Lett., 2008, 9 (1): 491-495
[11] Chan C K, Patel R N, O’Connell M J, Korgel B A, Cui Y. ACS Nano, 2010, 4 (3): 1443-1450
[12] Song T, Xia J, Lee J H, Lee J H, Kwon M S, Choi J M, Wu J, Doo S K, Chang H, Park W I, Zang D S, Kim H, Huang Y, Hwang K C, Rogers J A, Paik U. Nano Lett., 2010, 10(5): 1710-1716
[13] Fll H, Hartz H, Ossei-Wusu E, Carstensen J, Riemenschneider O. Phys. Status Solidi-R., 2010, 4 (1/2): 4-6
[14] Chan C K, Peng H, Liu G, McIlwrath K, Zhang X F, Huggins R A, Cui Y. Nat. Nano, 2008, 3 (1): 31-35
[15] Uehara M, Suzuki J, Tamura K, Sekine K, Takamura J. J. Power Sources, 2005, 146(1/2): 441-444
[16] Buqa H, Holzapfel M, Krumeich F, Veit C, Novák P. J. Power Sources, 2006, 161: 617-622
[17] Li J, Christensen L, Obrovac M N, Hewitt K C, Dahn J R. J. Electrochem. Soc., 2008, 155 (3): A234-A238
[18] Xu Y, Yin G, Ma Y, Zuo P, Cheng X. J. Power Sources, 2010, 195 (7): 2069-2073
[19] 高鹏飞(Gao P F), 陈益中(Chen Y Z), 杨军(Yang J). 化学与物理电源系统(Chemical and Physical Power Sources), 2010, (16): 4-9
[20] Kim Y L, Sun Y K, Lee S M. Electrochim. Acta, 2008, 53 (13): 4500-4504
[21] 杨军(Yang J), 高鹏飞(Gao P F), 王久林(Wang J L), 努丽燕娜(Nuli Y N). CN101453007, 2008
[22] Zhang T, Fu L, Gao J, Yang L, Wu Y, Wu H. Pure Appl. Chem., 2006, 78 (10): 1889-1896
[23] Kasavajjula U, Wang C S, Appleby A J. J. Power Sources, 2007, 163 (2): 1003-1039
[24] Yoshio M, Wang H, Fukuda K, Umeno T, Dimov N, Ogumi Z. J. Electrochem. Soc., 2002, 149: A1598-A1603
[25] Ng S H, Wang J, Wexler D, Konstantinov K, Guo Z P, Liu H K. Angew. Chem. Int. Ed., 2006, 45 (41): 6896-6899
[26] Ng S H, Wang J, Wexler D, Chew S Y, Liu H K. J. Phys. Chem. C, 2007, 111 (29): 11131-11138
[27] Ng S H, Wang J, Konstantinov K, Wexler D, Chew S Y, Guo Z P, Liu H K. J. Power Sources, 2007, 174 (2): 823-827
[28] Kwon Y, Park G, Cho J. Electrochim. Acta, 2007, 52 (14): 4663-4668
[29] Kim H, Seo M, Park M H, Cho J. Angew. Chem. Int. Ed., 2010, 49 (12): 2146-2149
[30] Hu Y S, Demir-Cakan R, Titirici M M, Müller J O, Schlgl R, Antonietti M, Maier J. Angew. Chem. Int. Ed., 2008, 47 (9): 1645-1649
[31] Demir-Cakan R, Titirici M M, Antonietti M, Cui G, Maier J, Hu Y S. Chem. Commun., 2008, 3759-3761
[32] Su L W, Zhou Z, Ren M M. Chem. Commun., 2010, 46 (15): 2590-2592
[33] Xu Y, Yin Y, Ma Y, Zuo P, Cheng X. J. Mater. Chem., 2010, 20 (16): 3216-3220
[34] Lee J K, Kung M C, Trahey L, Missaghi M N, Kung H H. Chem. Mater., 2008, 21 (1): 6-8
[35] Gao P F, Fu J W, Yang J, Lü R G, Wang J L, Nuli Y N, Tang X Z. Phys. Chem. Chem. Phys., 2009, 11 (47): 11101-11105
[36] Huang R, Fan X, Shen W, Zhu J. Appl. Phys. Lett., 2009, 95 (13): 133119-133113
[37] Kim H, Cho J. Nano Lett., 2008, 8 (11): 3688-3691
[38] Park M H, Kim M G, Joo J, Kim K, Kim J, Ahn S, Cui Y, Cho J. Nano Lett., 2009, 9 (11): 3844-3847
[39] Lü R G, Yang J, Gao P F, NuLi Y N, Wang Y N. J. Alloy. Compd., 2010, 490 (1/2): 84-87
[40] Ji L, Zhang X. Mater. Lett., 2008, 62 (14): 2161-2164
[41] Ji L, Jung K, Medford A, Zhang X. J. Mater. Chem., 2009, 19 (28): 4992-4997
[42] Ji L, Zhang X. Carbon, 2009, 47 (14): 3219-3226
[43] Ji L, Zhang X. Energy Environ. Sci., 2010, 3 (1): 124-129
[44] Schulz D L, Hoey J, Smith J, Elangovan A, Wu X, Akhatov I, Payne S, Moore J, Boudjouk P, Pederson L, Xiao J, Zhang J G. Electrochem. Solid-State Lett., 2010, 13 (10): A143-A145
[45] Wang L, Ding C, Zhang L, Xu H, Zhang D, Cheng T, Chen C. J. Power Sources, 2010, 195 (15): 5052-5056
[46] Ji J, Zhang X. Electrochem. Commun., 2009, 11 (6): 1146-1149
[47] Shu J, Li H, Yang R Z, Shi Y, Huang X J. Electrochem. Commun., 2006, 8 (1): 51-54
[48] Kim T, Mo Y H, Nahm K S, Oh S M. J. Power Sources, 2006, 162 (2): 1275-1281
[49] Liu H P, Qiao W M, Zhan L, Ling L C. New Carbon Mater., 2009, 24 (2): 124-130
[50] Jang S M, Miyawaki J, Tsuji M, Mochida I, Yoon S H. Carbon, 2009, 47 (15): 3383-3391
[51] Cui L F, Yang Y, Hsu C M, Cui Y. Nano Lett., 2009, 9 (9): 3370-3374
[52] Wang W, Kumta P N. ACS Nano, 2010, 4 (4): 2233-2241
[53] Hertzberg B, Alexeev A, Yushin G. J. Am. Chem. Soc., 2010, 132 (25): 8548-8549
[54] Bao Z, Weatherspoon M, Shian S, Cai Y, Graham P, Allan S, Ahmad G, Dickerson M, Church B, Kang Z. Nature, 2007, 446 (7132): 172-175
[55] Han W K, Ko Y N, Yoon C S, Choa Y H, Oh S T, Kang S G. Korean J. Mater. Res., 2009, 19 (10): 517-521
[56] Kim H, Han B, Choo J, Cho J. Angew. Chem. Int. Ed., 2008, 47 (52): 10151-10154
[57] Liu W R, Wang J H, Wu H C, Shieh D T, Yang M H, Wu N L. J. Electrochem. Soc., 2005, 152 (9): A1719-A1725
[58] Dimov N, Kugino S, Yoshio M. Electrochim. Acta, 2003, 48 (11): 1579-1587
[59] Saint J, Morcrette M, Larcher D, Laffont L, Beattie S, Peres J, Talaga D, Couzi M, Tarascon J. Adv. Funct. Mater., 2007, 17 (11): 1765-1774
[60] Liu Y, Wen Z Y, Wang X Y, Hirano A, Imanishi N, Takeda Y. J. Power Sources, 2009, 189 (1): 733-737
[61] Wen Z S, Yang J, Wang B F, Wang K, Liu Y. Electrochem. Commun., 2003, 5 (2): 165-168
[62] Yang J, Wang B F, Wang K, Liu Y, Xie J Y, Wen Z S. Electrochem. Solid-State Lett., 2003, 6 (8):A154-A156
[63] Zheng Y, Yang J, Wang J, NuLi Y. Electrochim. Acta, 2007, 52 (19): 5863-5867
[64] Magasinski A, Dixon P, Hertzberg B, Kvit A, Ayala J, Yushin G. Nat. Mater., 2010, 9 (4): 353-358
[65] Cahen S, Janot R, Laffont-Dantras L, Tarascon J M. J. Electrochem. Soc., 2008, 155 (7): A512-A519
[66] Chou S L, Wang K B, Choucair M, Liu H K, Stride J A, Dou S X. Electrochem. Commun., 2010, 12 (2): 303-306
[67] Wang J, Zhong C, Chou S, Liu H. Electrochem. Commun., 2010, 12(11): 1467-1470
[68] Lee J K, Smith K B, Hayner C M, Kung H H. Chem. Commun., 2010, 46 (12): 2025-2027
[69] Wilson A, Xing W, Zank G, Yates B, Dahn J. Solid State Ionics, 1997, 100 (3/4): 259-266
[70] Wilson A M, Dahn J R. J. Electrochem. Soc., 1995, 142 (2): 326-332
[71] Wang X, Wen Z, Liu Y, Huang L, Wu M. J. Alloy Compd., 2010, 506(1): 317-322
[72] Wang X, Wen Z, Liu Y, Huang Y, Wen T. Solid State Ionics, 2010, doi: 10. 1016/j. ssi. 2010. 03. 008
[73] 王秀艳(Wang X Y). 中国科学院上海硅酸盐研究所博士论文(Doctoral Dissertation of Shanghai Institute of Ceramics, Chinese Academy of Sciences), 2010
[74] Liu Y, Matsumura T, Imanishi N, Hirano A, Ichikawa T, Takeda Y. Electrochem. Solid-State Lett., 2005, 8 (11): A599-A602
[75] Hanai K, Liu Y, Imanishi N, Hirano A, Matsumura M, Ichikawa T, Takeda Y. J. Power Sources, 2005, 146 (1/2): 156-160
[76] Wu Y S, Lee Y H, Tsai Y L. J. Mater. Process. Tech., 2008, 208 (1/3): 35-41
[77] Veluchamy A, Doh C H, Kim D H, Lee J H, Lee D J, Ha K H, Shin H M, Jin B S, Kim H S, Moon S I, Park C W. J. Power Sources, 2009, 188 (2): 574-577
[78] Lu Z, Zhang L, Liu X. J. Power Sources, 2010, 195 (13): 4304-4307
[79] Park C M, Choi W, Hwa Y, Kim J H, Jeong G, Sohn H J. J. Mater. Chem., 2010, 20 (23): 4854-4860
[80] Guo Z P, Wang J Z, Liu H K, Dou S X. J. Power Sources, 2005, 146 (1/2): 448-451
[81] Dong H, Feng R X, Ai X P, Cao Y L, Yang H X. Electrochim. Acta, 2004, 49 (28): 5217-5222
[82] Netz A, Huggins R A, Weppner W. J. Power Sources, 2003, 119/121: 95-100
[83] Liu W R, Wu N L, Shieh D T, Wu H C, Yang M H, Korepp C, Besenhard J O, Winter M. J. Electrochem. Soc., 2007, 154 (2): A97-A102
[84] Yoon S, Lee S I, Kim H, Sohn H J. J. Power Sources, 2006, 161 (2): 1319-1323
[85] Sano Y T, Hasegawa M, Bito Y. in Extended Abstract in the 46th Battery Symposium, Nagoya, Japan, 2005. 480-481
[86] Zhou S, Liu X H, Wang D W. Nano Lett., 2010, 10 (3): 860-863
[87] Nuli Y, Wang B, Yang J, Yuan X, Ma Z. J. Power Sources, 2006, 153 (2): 371-374
[88] Kim H, Choi J, Sohn H J, Kang T. J. Electrochem. Soc., 1999, 146 (12): 4401-4405
[89] Yang X L, Wen Z Y, Zhang L L, You M, Lin Z X. Chinese J. Inorg. Chem., 2007, 23 (12): 2054-2058
[90] Chen Z, Christensen L, Dahn J R. Electrochem. Commun., 2003, 5 (11): 919-923
[91] Wang X, Wen Z, Liu Y, Wu X. Electrochim. Acta, 2009, 54 (20): 4662-4667
[92] Yu Y, Gu L, Zhu C, Tsukimoto S, Aken P A V, Maier J. Adv. Mater., 2010, 22 (20): 2247-2250
[93] Guo J, Sun A, Wang C. Electrochem. Commun., 2010, 12 (7): 981-984
[94] Xu W, Canfield N L, Wang D, Xiao J, Nie Z, Li X S, Bennett W D, Bonham C C, Zhang J G. J. Electrochem. Soc., 2010, 157 (7): A765-A769
[95] Yang J, Takeda Y, Imanishi N, Yamamoto O. Electrochim. Acta, 2001, 46 (17): 2659-2664
[96] Liu Y, Hanai K, Horikawa K, Imanishi N, Hirano A, Takeda Y. Mater. Chem. Phys., 2005, 89 (1): 80-84
[97] Seong I W, Kim K T, Yoon W Y. J. Power Sources, 2009, 189 (1): 511-514

[1] Zhichao Liu, Hongliang Mu, Yan Li, Liu Feng, Dong Wang, Guangwu Wen. Application of Metal-Organic Frameworks-Derived Conversion-Type Anodes in Alkali Metal-Ion Batteries [J]. Progress in Chemistry, 2021, 33(11): 2002-2023.
[2] Deying Mu, Zhu Liu, Shan Jin, Yuanlong Liu, Shuang Tian, Changsong Dai. The Recovery and Recycling of Cathode Materials and Electrolyte from Spent Lithium Ion Batteries in Full Process [J]. Progress in Chemistry, 2020, 32(7): 950-965.
[3] Zhan Wu, Xiaohan Li, Aowei Qian, Jiayu Yang, Wenkui Zhang, Jun Zhang. Electrochromic Energy-Storage Devices Based on Inorganic Materials [J]. Progress in Chemistry, 2020, 32(6): 792-802.
[4] Zhaoxiang Wang, Jun Ma, Yurui Gao, Shuai Liu, Xin Feng, Liquan Chen. Stabilizing Structure and Performances of Lithium Rich Layer-Structured Oxide Cathode Materials [J]. Progress in Chemistry, 2019, 31(11): 1591-1614.
[5] Yijia Shao, Bin Huang, Quanbing Liu, Shijun Liao. Preparation and Modification of Ni-Co-Mn Ternary Cathode Materials [J]. Progress in Chemistry, 2018, 30(4): 410-419.
[6] Meng Haowen, Ma Daqian, Yu Xiaohui, Yang Hongyan, Sun Yanli, Xu Xinhua. Tin-Metal-Carbon Composite Anode Materials for Lithium Ion Batteries [J]. Progress in Chemistry, 2015, 27(8): 1110-1122.
[7] Lou Shuaifeng, Cheng Xinqun, Ma Yulin, Du Chunyu, Gao Yunzhi, Yin Geping. Nb-Based Oxides as Anode Materials for Lithium Ion Batteries [J]. Progress in Chemistry, 2015, 27(2/3): 297-309.
[8] Liu Xin, Zhao Hailei, Xie Jingying, Wang Ke, Lv Pengpeng, Gao Chunhui. SnS2 Based Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2014, 26(09): 1586-1595.
[9] Gong Xue, Yang Jinlong, Jiang Yulin, Mu Shichun. Application of Electrospinning Technique in Power Lithium-Ion Batteries [J]. Progress in Chemistry, 2014, 26(01): 41-47.
[10] Liu Zhangbo, Liu Beibei, Xia Changrong. Nano-Structured Anodes of Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2013, 25(11): 1821-1829.
[11] Wang Haiyan*, Tang Yougen, Zhou Donghui, Liu Suqin, Zhang Hui. MV3O8(M=Li+, Na+, NH4+) as Novel Intercalated Materials for Li-Ion Batteries [J]. Progress in Chemistry, 2013, 25(06): 927-939.
[12] Chu Daobao, Li Jian, Yuan Ximei, Li Zilong, Wei Xu, Wan Yong. Tin-Based Alloy Anode Materials for Lithium Ion Batteries [J]. Progress in Chemistry, 2012, 24(08): 1466-1476.
[13] Yang Li, Chen Jizhang, Tang Yufeng, Fang Shaohua. Li4Ti5O12 Anode Materials Applied in Lithium Ion Batteries [J]. Progress in Chemistry, 2011, 23(0203): 310-317.
[14] Tao Zhanliang, Wang Hongbo, Chen Jun. Si-Based Materials as the Anode of Lithium-Ion Batteries [J]. Progress in Chemistry, 2011, 23(0203): 318-327.
[15] Dong Quanfeng, Song Jie, Zheng Mingsen, Susanne Jacke, Wolfram Jaegermann. Investigation of Microscale Lithium Ion Batteries and the Key Materials [J]. Progress in Chemistry, 2011, 23(0203): 374-381.