中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (01): 65-79 Previous Articles   Next Articles

• Review •

Research and Application of Particle Emulsifiers

Yi Chenglin1, Yang Yiqun1, Jiang Jinqiang1, Liu Xiaoya1, Jiang Ming2   

  1. 1. Department of Chemistry and Material Engineering, Jiangnan University, Wuxi 21412;
    2. The Key Laboratory of Molecular Engineering of Polymers, Ministry of Education Fudan University, Shanghai 200433, China
  • Received: Revised: Online: Published:
PDF ( 2627 ) Cited
Export

EndNote

Ris

BibTeX

In recent years, great attention have been paid to particle emulsifiers due to their potential application prospects in food, oil recovery, cosmetics, pharmaceutical, catalyst and the preparation of functional nano-materials. The recent research progress in particle emulsifiers is reviewed in this paper. The types of particle emulsifiers are summarized, including inorganic nanoparticles, surface modified or hybrid inorganic particles, organic nanoparticles and special particle emulsifier, Janus particles; the thermodynamic mechanism and kinetic behaviors of the particle emulsifiers stabled at the oil-water interface are elucidated; the contact angle of the particle emulsifiers at the phase interface and the particle size are key parameters that effect the adsorption stability of particles at the interface, while the arrangement pattern of particle emulsifiers in the oil-water interface is affected mainly by the interaction between particles. The recent application of the particle emulsifiers is also highlighted, including (1) preparation of Pickering emulsions, and functional modification of particle emulsifiers to make emulsions sensitive to pH, salt concentration, temperature, UV light, magnetic field; (2) preparation of Janus particles, colloidosomes, the particles or membranes with multi-level structures, and materials with porous structures using particle emulsifier as block and Pickering emulsion as template; (3) application of Janus particles in catalysis.

CLC Number: 

[1] Ramsden W. Proc. R. Soc. Lond., 1903, 72: 156—164
[2] Pickering S U. J. Chem. Soc. Trans., 1907, 91: 2001 — 2021
[3] Binks B P. Curr. Opin. Colloid Interface Sci., 2002, 7: 21—41
[4] Duan L, Chen M, Zhou S, Wu L. Langmuir, 2009, 25(6): 3467—3472
[5] Li D, He Y, Wang S. J. Phys. Chem. C, 2009, 113(30): 12927—12929
[6] Bon S A F, Colver P J. Langmuir, 2007, 23(16): 8316—8322
[7] Shen M, Resasco D E. Langmuir, 2009, 25(18): 10843—10851
[8] Fujii S, Okada M, Furuzono T. J. Colloid Interface Sci., 2007, 315(1): 287—296
[9] Ding S, Liu B, Zhang C, Wu Y, Xu H, Qu X, Liu J, Yang Z. J. Mater. Chem., 2009, 19(21): 3443—3448
[10] Yang F, Liu S, Xu J, Lan Q, Wei F, Sun D. J. Colloid Interface Sci., 2006, 302(1): 159—169
[11] Lan Q, Liu C, Yang F, Liu S, Xu J, Sun D. J. Colloid Interface Sci., 2007, 310(1): 260—269
[12] Yang F, Niu Q, Lan Q, Sun D. J. Colloid Interface Sci., 2007, 306(2): 285—295
[13] Lin Y, Skaff H, Bker A, Dinsmore A D, Emrick T, Russell T P. J. Am. Chem. Soc., 2003, 125: 12690—12691
[14] Li J, Stver H D H. Langmuir, 2008, 24(23): 13237—13240
[15] Sugita N, Nomura S, Kawaguchi M. Colloids Surf. A, 2008, 328(1/3): 114—122
[16] Sarbu T, Sirk K, Lowry G V, Matyjaszewski K, Tilton R D. Langmuir, 2005, 21(22): 9873—9878
[17] Wu Y, Zhang J, Zhao H. J. Polym. Sci. Part A: Polym. Chem., 2009, 47(6): 1535—1543
[18] Binks B P, Murakami R, Armes S P, Fujii S. Langmuir, 2006, 22(5): 2050—2057
[19] Amalvy J I, Armes S P, Binks B P, Rodrigues J A, Unali G F. Chem. Commun., 2003, (15): 1826—1827
[20] Binks B P, Rodrigues J A. Angew. Chem. Int. Ed., 2005, 44(3): 441—444
[21] Ngai T, Behrens S H, Auweter H. Chem. Commun., 2005, (3): 331—333
[22] Zhang K, Wu W, Guo K, Chen J, Zhang P. Langmuir, 2010, 26(11): 7971—7980
[23] Brugger B, Richtering W. Langmuir, 2008, 24(15): 7769—7777
[24] Akartuna I, Tervoort E, Wong J C H, Studart A R, Gauckler L J. Polymer, 2009, 50(15): 3645—3651
[25] Fujii S, Cai Y, Weaver J V M, Armes S P. J. Am. Chem. Soc., 2005, 127(20): 7304—7305
[26] 杨逸群(Yang Y Q), 易成林(Yi C L), 王益华(Wang Y H), 江金强(Jiang J Q), 刘晓亚(Liu X Y). 物理化学学报(Acta Phys. -Chim. Sin. ), 2009, 25(11): 2225—2231
[27] 刘晓亚(Liu X Y), 王益华(Wang Y H), 易成林(Yi C L), 冯艳(Feng Y), 江金强(Jiang J Q), 崔正刚(Cui Z G), 陈明清(Chen M Q). 化学学报(Acta Chimica Sinica), 2009, 67(5): 447—452
[28] Liu X, Yi C, Zhu Y, Yang Y, Jiang J, Cui Z, Jiang M. J. Colloid Interface Sci., 2010, 351(2): 315—322
[29] Hu M, McClements D J, Decker E A. J. Agric. Food Chem., 2003, 51(6): 1696—1700
[30] He Y, Li K. J. Colloid Interface Sci., 2007, 306(2): 296—299
[31] Cayre O, Paunov V N, Velev O D. Chem. Commun., 2003, 2296—2297
[32] Paunov V, Cayre O. Adv. Mater., 2004, 16(9/10): 788—791
[33] Aveyard R, Binks B P, Clint J H. Adv. Colloid Interface Sci., 2003, 100/102: 503—546
[34] Pieranski P. Phys. Rev. Lett., 1980, 45(7): 569—572
[35] Binks B P, Lumsdon S O. Langmuir, 2000, 16(23): 8622—8631
[36] Binks B P, Lumsdon S O. Langmuir, 2001, 17(15): 4540—4547
[37] Binks B P, Philip J, Rodrigues J A. Langmuir, 2005, 21(8): 3296—3302
[38] Boker A, He J, Emrick T, Russell T P. Soft Matter, 2007, 3(10): 1231—1248
[39] Read E S, Fujii S, Amalvy J I, Randall D P, Armes S P. Langmuir, 2004, 20(18): 7422—7429
[40] Tarimala S, Dai L L. Langmuir, 2003, 20(9): 3492—3494
[41] Tarimala S, Ranabothu S R, Vernetti J P, Dai L L. Langmuir, 2004, 20(13): 5171—5173
[42] Dai L L, Sharma R, Wu C Y. Langmuir, 2005, 21(7): 2641—2643
[43] Tarimala S, Wu C Y, Dai L L. Langmuir, 2006, 22(18): 7458—7461
[44] Wu C Y, Tarimala S, Dai L L. Langmuir, 2006, 22(5): 2112—2116
[45] Dai L L, Tarimala S, Wu C Y, Guttula S, Wu J. Scanning, 2008, 30(2): 87—95
[46] Ma H, Dai L L. Langmuir, 2009, 25(19): 11210—11215
[47] Dinsmore A D, Hsu M F, Nikolaides M G, Marquez M, Bausch A R, Weitz D A. Science, 2002, 298(5595): 1006—1009
[48] Fujii S, Armes S P, Binks B P, Murakami R. Langmuir, 2006, 22(16): 6818—6825
[49] Ngai T, Auweter H, Behrens S H. Macromolecules, 2006, 39(23): 8171—8177
[50] Aveyard R, Clint J H, Nees D, Paunov V N. Langmuir, 2000, 16(4): 1969—1979
[51] Song Y, Luo M, Dai L L. Langmuir, 2009, 26(1): 5—9
[52] 杨飞(Yang F), 王君(Wang J), 蓝强(Lan Q), 孙德军(Sun D J), 李传宪(Li C X). 化学进展(Progress in Chemistry), 2009, 21(7/8): 1418—1426
[53] Wang J, Yang F, Tan J, Liu G, Xu J, Sun D. Langmuir, 2010, 26(8): 5397—5404
[54] Wang J, Yang F, Li C, Liu S, Sun D. Langmuir, 2008, 24(18): 10054—10061
[55] Binks B P, Rodrigues J A. Angew. Chem. Int. Ed., 2007, 46(28): 5389—5392
[56] Wu Y, Zhang C, Qu X, Liu Z, Yang Z. Langmuir, 2010, 26(12): 9442—9448
[57] Binks B P, Murakami R, Armes S P, Fujii S, Schmid A. Langmuir, 2007, 23(17): 8691—8694
[58] Fujii S, Read E S, Binks B P, Armes S P. Adv. Mater., 2005, 17(8): 1014—1018
[59] Dupin D, Armes S P, Connan C, Reeve P, Baxter S M. Langmuir, 2007, 23(13): 6903—6910
[60] Brugger B, Rosen B A, Richtering W. Langmuir, 2008, 24(21): 12202—12208
[61] Zhang L, Eisenberg A. Science, 1995, 268: 1728—1731
[62] Tian F, Yu Y, Wang C, Yang S. Macromolecules, 2008, 41(10): 3385—3388
[63] Liu X, Kim J S, Wu J, Eisenberg A. Macromolecules, 2005, 38(16): 6749—6751
[64] Riegel I C, Eisenberg A, Petzhold C L, Samios D. Langmuir, 2002, 18(8): 3358—3363
[65] Liu X, Jiang M, Yang S, Chen M, Chen D, Yang C, Wu K. Angew. Chem. Int. Ed., 2002, 41(16): 2950—2953
[66] Melle S, Lask M, Fuller G G. Langmuir, 2005, 21(6): 2158—2162
[67] Correa-Duarte M A, Salgueirio-Maceira V, Rodríguez-González B, Liz-Marzán L M, Kosiorek A, Kandulski W, Giersig M. Adv. Mater., 2005, 17(16): 2014—2018
[68] Cole-Hamilton D J. Science, 2010, 327(5961): 41—42
[69] Crossley S, Faria J, Shen M, Resasco D E. Science, 2010, 327(5961): 68—72
[70] Ho C C, Chen W S, Shie T Y, Lin J N, Kuo C. Langmuir, 2008, 24(11): 5663—5666
[71] Lattuada M, Hatton T A. J. Am. Chem. Soc., 2007, 129(42): 12878—12889
[72] Hong L, Jiang S, Granick S. Langmuir, 2006, 22(23): 9495—9499
[73] Perro A, Meunier F, Schmitt V, Ravaine S. Colloids Surf. A, 2009, 332(1): 57—62
[74] Jiang S, Granick S. Langmuir, 2008, 24(6): 2438—2445
[75] Suzuki D, Tsuji S, Kawaguchi H. J. Am. Chem. Soc., 2007, 129(26): 8088—8089
[76] Zhang J, Jin J, Zhao H. Langmuir, 2009, 25(11): 6431—6437
[77] Cohen I, Li H, Hougland J L, Mrksich M, Nagel S R. Science, 2001, 292: 265—267
[78] He X, Ge X W, Wang M, Zhang Z. Polymer, 2005, 46(18): 7598—7604
[79] Ao Z, Yang Z, Wang J, Zhang G, Ngai T. Langmuir, 2009, 25(5): 2572—2574
[80] Chen Y, Wang C, Chen J, Liu X, Tong Z. J. Polym. Sci., Part A: Polym. Chem., 2009, 47(5): 1354—1367
[81] Cauvin S, Colver P J, Bon S A F. Macromolecules, 2005, 38(19): 7887—7889
[82] Colver P J, Chen T, Bon S A F. Macromol. Symp., 2006, 245/246(1): 34—41
[83] Bon S A F, Chen T. Langmuir, 2007, 23(19): 9527—9530
[84] Colver P J, Colard C A L, Bon S A F. J. Am. Chem. Soc., 2008, 130(50): 16850—16851
[85] He X, Ge X, Liu H, Wang M, Zhang Z. Chem. Mater., 2005, 17(24): 5891—5892
[86] He X, Ge X, Liu H, Zhou H, Zhang Z. Colloids Surf. A, 2007, 301(1/3): 80—84
[87] Yuan Q, Yang L, Wang M, Wang H, Ge X, Ge X. Langmuir, 2009, 25(5): 2729—2735
[88] Ge X, Wang M, Wang H, Yuan Q, Ge X, Liu H, Tang T. Langmuir, 2009, 26(3): 1635—1641
[89] Sun W, Ji J, Shen J. Langmuir, 2008, 24(20): 11338—11341
[90] Widawski G, Rawiso M, Franois B. Nature, 1994, 369: 387—389
[91] Studart A R, Gonzenbach U T, Tervoort E, Gauckler L J. J. Am. Ceram. Soc., 2006, 89(6): 1771—1789
[92] Colver P J, Bon S A F. Chem. Mater., 2007, 19(7): 1537—1539
[93] Gurevitch I, Silverstein M S. J. Polym. Sci. Part A: Polym. Chem., 2010, 48(7): 1516—1525
[94] Binks B P, Clint J H, Fletcher P D I, Lees T J G, Taylor P. Chem. Commun., 2006, 3531—3533
[95] Horozov T S. Curr. Opin. Colloid Interface Sci., 2008, 13(3): 134—140
[96] Binks B P, Fletcher P D I. Langmuir, 2001, 17(16): 4708—4710
[97] Glaser N, Adams D J, Bker A, Krausch G. Langmuir, 2006, 22(12): 5227—5229

[1] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[2] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[3] Senlin Tang, Huan Gao, Ying Peng, Mingguang Li, Runfeng Chen, Wei Huang. Non-Radiative Recombination Losses and Regulation Strategies of Perovskite Solar Cells [J]. Progress in Chemistry, 2022, 34(8): 1706-1722.
[4] Yawei Liu, Xiaochun Zhang, Kun Dong, Suojiang Zhang. Research of Condensed Matter Chemistry on Ionic Liquids [J]. Progress in Chemistry, 2022, 34(7): 1509-1523.
[5] Feng Lu, Ting Zhao, Xiaojun Sun, Quli Fan, Wei Huang. Design of NIR-Ⅱ Emissive Rare-earth Nanoparticles and Their Applications for Bio-imaging [J]. Progress in Chemistry, 2022, 34(6): 1348-1358.
[6] Xumin Wang, Shuping Li, Renjie He, Chuang Yu, Jia Xie, Shijie Cheng. Quasi-Solid-State Conversion Mechanism for Sulfur Cathodes [J]. Progress in Chemistry, 2022, 34(4): 909-925.
[7] Xiangrui Kong, Jing Dou, Shuzhen Chen, Bingbing Wang, Zhijun Wu. Progress of Synchrotron-Based Research on Atmospheric Science [J]. Progress in Chemistry, 2022, 34(4): 963-972.
[8] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.
[9] Minglong Lu, Xiaoyun Zhang, Fan Yang, Lian Wang, Yuqiao Wang. Surface/Interface Modulation in Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 547-556.
[10] Dandan Zhang, Qi Wu, Guangbo Qu, Jianbo Shi, Guibin Jiang. Quantitative Analysis of Metal Nanoparticles in Unicellular Aquatic Organisms [J]. Progress in Chemistry, 2022, 34(11): 2331-2339.
[11] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[12] Long Chen, Shaobo Huang, Jingyi Qiu, Hao Zhang, Gaoping Cao. Polymer Electrolyte/Anode Interface in Solid-State Lithium Battery [J]. Progress in Chemistry, 2021, 33(8): 1378-1389.
[13] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[14] Wentao Li, Hai Zhong, Yaohua Mai. In-Situ Polymerization Electrolytes for Lithium Rechargeable Batteries [J]. Progress in Chemistry, 2021, 33(6): 988-997.
[15] Suye Lv, Liang Zou, Shouliang Guan, Hongbian Li. Application of Graphene in Neural Activity Recording [J]. Progress in Chemistry, 2021, 33(4): 568-580.