中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (01): 42-52 Previous Articles   Next Articles

• Invited Article •

The Functional Inorganic Composites

Wei Xiao, Wang Kaixue, Chen Jiesheng   

  1. School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received: Revised: Online: Published:
PDF ( 1464 ) Cited
Export

EndNote

Ris

BibTeX

Composite systems may be obtained through chemical-physical incorporation of various components, and if the components are inorganic or largely inorganic, the composites are designated inorganic composite systems. The properties and functions of inorganic composites can be tuned through controlling the composition, the structure and the morphology of the composites. The inorganic composite systems usually include the host-guest composites, coordination polymers and a variety of nanocomposites and so on. The functionalization of these inorganic composites is very important for develop and application of the new materials and energies. This article briefly reviews the recent advancement in design and preparation of inorganic composites such as the functional host-guest composites, functional nanocomposites as well as functional coordination polymers with the luminescent, magnetic and catalytic properties. And the relevant recent results achieved by our own research group have been summarized. The practical application of functional inorganic composites and its impact on the advancement of science and technology are also discussed.

CLC Number: 

[1] 周馨我(Zhou X W), 张公正(Zhang G Z), 范广裕(Fan G Y). 功能材料学(Functional Material Science), 北京: 北京理工大学出版社(Beijing: Beijing Institute of Technology Press), 2002
[2] Dag O, Kuperman A, Ozin G A. Adv. Mater., 1995, 7: 72—78
[3] Gao Q, Xiu Y, Li G D, Chen J S. J. Mater. Chem., 2010, 20: 3307—3312
[4] Guo Y, Zhang H, Wang Y, Liao Z L, Li G D, Chen J S. J. Phys. Chem. B, 2005, 109: 21602—21607
[5] 李文卓(Li W Z), 陆军(Lu J), 秦成刚(Qin C G), 陈接胜(Chen J S), 李连生(Li L S), 黄佰渠(Huang B Q). 化学学报(Acta Chmica Sinica), 2004, 62(22): 2239—2243
[6] Li L, Zhou X S, Li G D, Pan X L, Chen J S. Angew. Chem. Int. Ed., 2009, 48: 6678—6682
[7] Briseno A L, Holcombe T W, Boukai A I, Garnett E C, Shelton S W, Fréchet J J M, Yang P D. Nano Lett., 2010, 10: 334—340
[8] Hochbaum A I, Yang P D. Chem. Rev., 2010, 110: 527—546
[9] Briseno A L, Yang P D. Nature Matel., 2009, 8: 7—8
[10] Yan R X, Liang W J, Fan R, Yang P D. Nano Lett., 2009, 9: 3820—3825
[11] Nazzal A Y, Wang X Y, Qu L H, Yu W, Wang Y J, Peng X G, Xiao M. J. Phys. Chem. B, 2004, 108: 5507—5515
[12] Berezovsky J, Gywat O, Meier F, Battaglia D, Peng X G, Awschalom D D. Nature Phys., 2006, 2: 831—834
[13] Wang Z L. Adv. Funct. Mater., 2008, 18: 3553—3567
[14] Wei T Y, Yeh P H, Lu S Y, Wang Z L. J. Am. Chem. Soc., 2009, 131: 17690—17695
[15] Zhang D H, Li G D, Li J X, Chen J S. Chem. Comm., 2008, 3414—3416
[16] Zhang D H, Li H B, Li G D, Chen J S. Dalton Trans., 2009, 10527—10533
[17] Zou X X, Li G D, Guo M Y, Li X H, Liu D P, Su J, Chen J S. Chem. Eur. J., 2008, 14: 11123—11131
[18] Wu T S, Wang K X, Li G D, Sun S Y, Sun J, Chen J S. Appl. Mater. Inter., 2010, 2: 544—550
[19] Jiang Y S, Li G H, Tian Y, Liao Z L, Chen J S. Inorg. Chem. Commun., 2006, 9: 595—598
[20] Xiong H M, Liu D P, Xia Y Y, Chen J S. Chem. Mater., 2005, 17: 3062—3064
[21] Liu D P, Li G D, Su Yan, Chen J S. Angew. Chem. Int. Ed., 2006, 45: 7370—7373
[22] Liu D P, Li G C, Li J X, Li X H, Chen J S. Chem. Commun., 2007, 4131—4133
[23] Wu T S, Wang K X, Zou L Y, Li X H, Wang P, Wang D J, Chen J S. J. Phys. Chem. C, 2009, 113: 9114—9120
[24] Wang K J, Li G D, Li J X, Wang Q, Chen J S. Crys. Grow. Ses., 2007, 7: 2265—2267
[25] Wang K J, Wang K X, Zhang H, Li G D, Chen J S. J. Phys. Chem. C, 2010, 114: 2471—2475
[26] Li W Z, Qin C G, Xiao W M, Chen J S. J. Sol. Stat. Chem., 2005, 178: 390—394
[27] Tian Y, Li G D, Gao Q, Xiu Y, Li X H, Chen J S. Chem. Lett., 2007, 36: 422—423
[28] Ohno H, Shen A, Matsukura F, Oiwa A, Endo A, Katsumoto S, Iye Y. Appl. Phys. Lett., 1996, 69: 363—365
[29] Munekata H, Ohno H, Molnar S, Segmüller A, Chang L L, Esaki L. Phys. Rev. Lett., 1989, 63: 1849—1852
[30] Zou X X, Li G D, Wang K X, Li L, Su J, Chen J S. Chem. Commun., 2010, 46: 2122—2114
[31] Li X H, Zhang D H, Chen J S. J. Am. Chem. Soc., 2006, 128: 8382—8383
[32] Li X H, Li J X, Li G D, Liu D P, Chen J S. Chem. Eur. J., 2007, 13: 8754—8761
[33] Wang Q, Li G D, Xu S, Li J X, Chen J S. J. Mater. Chem., 2008, 18: 1146—1152
[34] James S L. Chem. Soc. Rev., 2003, 32: 276—288
[35] Pan L, Liu H, Lei X, Huang X, Olson D H, Turro N J, Li J. Angew. Chem. Int. Ed., 2003, 42: 542—546
[36] Chui S S Y, Lo S M F, Charmant J P H, Orpen A G, Williams I D. Science, 1999, 283: 1148—1150
[37] Batten S R, Robson R. Angew. Chem. Int. Ed., 1998, 37: 1460—1494
[38] Rosseinsky M J. Micro. Meso. Mater., 2004, 73: 15—30
[39] Kitagawa S, Kitaura R, Noro S. Angew. Chem. Int. Ed., 2004, 43: 2334—2375
[40] Morris R E, Bu X H. Nature Mater., 2010, 2: 353—361
[41] Ren Y P, Long L S, Mao B W, Yuan Y Z, Huang R B, Zheng L S. Angew. Chem. Int. Ed., 2003, 42: 532—535
[42] Yue Q, Yang J, Li G H, Li G D, Chen J S. Inorg. Chem., 2006, 45: 4431—4439
[43] Yang J, Yue Q, Li G, Cao J J, Li G H, Chen J S. Inorg. Chem., 2006, 45: 2857—2865
[44] Yue Q, Yang J, Yuan H M, Chen J S. J. Mol. Struct., 2007, 827: 114—120
[45] Thuéry P, Villiers C, Jaud J, Ephritikhine M, Masci B. J. Am. Chem. Soc., 2004, 126: 6838—6839
[46] Forbes T Z, McAlpin J G, Murphy R, Burns P C. Angew. Chem. Int. Ed., 2008, 47: 2824—2827
[47] Sigmon G E, Ling J, Unruh D K, Moore-Shay L, Ward M, Weaver B, Burns P C. J. Am. Chem. Soc., 2009, 131: 16648—16649
[48] Sigmon G E, Unruh D K, Ling J, Weaver B, Ward M, Pressprich L, Simonetti A, Burns P C. Angew. Chem. Int. Ed., 2009, 48: 2737—2740
[49] Ma S Q, Sun D F, Simmons J M, Collier C D, Yuan D Q, Zhou H C. J. Am. Chem. Soc., 2008, 130: 1012—1016
[50] Sun D F, Ma S Q, Ke Y X, Collins D J, Zhou H C. J. Am. Chem. Soc., 2006, 128: 3896—3897
[51] Ke Y X, Collins D J, Sun D F, Zhou H C. Inorg. Chem., 2006, 45: 1897—1899
[52] Jiang Y S, Li G H, Tian Y, Liao Z L, Chen J S. Inorg. Chem. Commun., 2006, 9: 595—598
[53] Liao Z L, Li G D, Bi M H, Chen J S. Inorg. Chem., 2008, 47: 4844—4853
[54] Yu Z T, Liao Z L, Jiang Y S, Li G H, Chen J S. Chem. Eur. J., 2005, 11: 2643—2650
[55] Yu Z T, Liao Z L, Jiang Y S, Li G H, Li G D, Chen J S. Chem. Commun., 2004, 1814—1814
[56] Jiang Y S, Yu Z T, Liao Z L, Li G H, Chen J S. Polyhedron, 2006, 25: 1359—1366
[57] Zhang F, Li G D, Chen J S. J. Col. Inter. Sci., 2008, 327: 108—114
[58] Zhang F, Ma H, Chen J, Li G D, Zhang Y, Chen J S. Bioresource Technol., 2008, 99: 4803—4808
[59] Zhang Y, Zhang F, Li G D, Chen J S. Mater. Lett., 2007, 61: 5209—5212
[60] Zhang F, Wang K X, Li G D, Chen J S. Electrochem. Commun., 2009, 11: 130—133
[61] 罗曼罗(Romero P G), 桑切斯(Sanchez C). (张学军、迟伟东 译)功能杂化材料(Functional Hybrid Materials). 北京: 化学工业出版社(Beijing: Beijing Chemical Industry Press), 2006 《化学进展——清洁能源材料与器件专辑》近期目次预告 新材料是战略性新兴产业的基础 (陈立泉) 锂离子电池硅复合负极材料 (高鹏飞 杨军) 锂离子电池电极材料选择 (张临超 陈春华) 锂离子电池正极材料的结构设计与改性 (王兆翔 陈立泉 黄学杰) 自由基聚合物——一类新颖的高性能二次电池材料 (赵瑞瑞 朱利敏 杨汉西) 锂离子电池负极材料Li4Ti5O12 (杨立 陈继章 唐宇峰 房少华) 锂离子电池负极硅基材料 (陶占良 王洪波 陈军) 锂离子电池的安全性技术 (夏兰 李素丽 艾新平 杨汉西) 纳米薄膜锂离子电池电极材料 (周永宁 傅正文) 锂离子二次电池界面过程的红外光谱研究 (李君涛 方俊川 苏航 孙世刚) 硼基锂盐电解质在锂离子电池中的应用 (仇卫华 阎坤 连芳 乔亚非) 离子液体在电池中的应用研究 (陈人杰 张海琴 吴锋) 微型锂离子电池及关键材料的研究 (董全峰 宋杰 郑明森 Susanne Jacke Wolfram Jaegermann) 有机硼酸锂盐及亚硫酸酯类功能电解质材料的研究 (陈人杰 何舟影 吴锋) 锂离子电池电极界面特性研究方法 (秦银平 庄全超 史月丽 江利 孙智 孙世刚) 锂离子电池安全性能研究 (吴凯 张耀 曾毓群 杨军) 中低温固体氧化物燃料电池阴极材料 (邵宗平) 低温固体氧化物燃料电池 (章蕾 夏长荣) 无机质子导体的研究进展 (马桂林 许佳 张明 王小稳 尹金玲 徐建红) 单气室固体氧化物燃料电池关键材料与微堆系统 (吕喆 魏波 田彦婷 王志红 苏文辉) 固体氧化物燃料电池关键材料综述及电池堆研究 (陈建颖 曾凡蓉 王绍荣 陈玮 郑学斌) 低温制备的掺杂氧化锆/氧化铈电解质的研究进展 (刘泽 韩敏芳 雷泽 宋世栋 于立安) 质子型可逆固体氧化物电池的材料与反应机理 (何非 彭冉冉 杨上峰) 质子交换膜燃料电池材料 (刘志祥 钱伟 郭建伟 张杰 王诚 毛宗强) Pt基金属间化合物电催化剂 (李翔 安丽 张丽娟 李钒 汪夏燕 夏定国) 直接甲醇燃料电池关键材料与技术 (王新东 谢晓峰 王萌 刘桂成 苗睿瑛 王一拓 阎群) 高性能锂硫电池材料研究进展 (温兆银 梁宵 刘宇) 高容量硫/碳复合正极材料 (赖超 李国春 高学平) 锂硫电池关键材料研究进展与展望 (董全峰 王翀 郑明森) 高比能锂硫电池关键材料的研究 (王维坤 余仲宝 苑克国 王安邦 杨裕生) 柔性染料敏化太阳电池的制备和性能研究 (林原 王尚华 付年庆 张敬波 周晓文 肖绪瑞) 染料敏化太阳能电池固态电解质的研究进展 (秦达 郭晓枝 孙惠成 于哲勋 罗艳红 孟庆波 李冬梅)

[1] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[2] Dong Baokun, Zhang Ting, He Fan. Research Progress and Application of Flexible Thermoelectric Materials [J]. Progress in Chemistry, 2023, 35(3): 433-444.
[3] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[4] Jiang Haoyang, Xiong Feng, Qin Mulin, Gao Song, He Liuruyi, Zou Ruqiang. Conductive Phase Change Materials (PCMs) for Electro-to-Thermal Energy Conversion, Storage and Utilization [J]. Progress in Chemistry, 2023, 35(3): 360-374.
[5] Feng Li, Qingyun He, Fang Li, Xiaolong Tang, Changlin Yu. Materials for Hydrogen Peroxide Production via Photocatalysis [J]. Progress in Chemistry, 2023, 35(2): 330-349.
[6] Xiaojun Liu, Lang Qin, Yanlei Yu. Light-Driven Handedness Inversion of Cholesteric Liquid Crystals [J]. Progress in Chemistry, 2023, 35(2): 247-262.
[7] Jing Li, Weigang Zhu, Wenping Hu. Organic Complex Materials and Devices for Near and Shortwave Infrared Photodetection [J]. Progress in Chemistry, 2023, 35(1): 119-134.
[8] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[9] Qitong Wang, Jiale Ding, Danying Zhao, Yunhe Zhang, Zhenhua Jiang. Dielectric Polymer Materials for Energy Storage Film Capacitors [J]. Progress in Chemistry, 2023, 35(1): 168-176.
[10] Juan Ye, Ziqian Lin, Weijian Li, Hongping Xiang, Minzhi Rong, Mingqiu Zhang. Fabrication Strategies to Self-Healing Silicone Materials [J]. Progress in Chemistry, 2023, 35(1): 135-156.
[11] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[12] Shuai Huang, Yu Tao, Yinliang Huang. Photodeformable Composite Materials Based on Liquid Crystalline Polymers [J]. Progress in Chemistry, 2022, 34(9): 2012-2023.
[13] Xu Zhang, Lei Zhang, Shanen Huang, Zhifang Chai, Weiqun Shi. Preparation of Salt-Inclusion Materials in High-Temperature Molten Salt System and Their Potential Application [J]. Progress in Chemistry, 2022, 34(9): 1947-1956.
[14] Shunxin Gu, Qin Jiang, Pengfei Shi. Antitumor Activity and Application of Luminescent Iridium(Ⅲ) Complexes [J]. Progress in Chemistry, 2022, 34(9): 1957-1971.
[15] Keqing Wang, Huimin Xue, Chenchen Qin, Wei Cui. Controllable Assembly of Diphenylalanine Dipeptide Micro/Nano Structure Assemblies and Their Applications [J]. Progress in Chemistry, 2022, 34(9): 1882-1895.
Viewed
Full text


Abstract

The Functional Inorganic Composites