中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (01): 221-230 Previous Articles   Next Articles

• Review •

Microfluidic Chip Based Microarray Analysis

Qu Xiangmeng1,2, Lin Rongsheng3, Chen Hong1,2   

  1. 1. Pen-Tung Sah Micro-Nano Technology Research Center, Xiamen University, Xiamen 361005, China;
    2. Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen 361005, China;
    3. Food and Drug Course Teaching Department, Xiamen Huaxia Vocational College, Xiamen 361024, China
  • Received: Revised: Online: Published:
PDF ( 1596 ) Cited
Export

EndNote

Ris

BibTeX

Microarray chip has been widely used in many fields because of its high throughput,miniaturization and automation.But there are still some disadvantages,such as highly priced instruments,long analysis time,low sensitivity and lacking of parallel analysis ability.Microfluidic device has large specific surface area and short diffusion distance because of its micrometer scale size,which can provide faster hybridization,higher detection efficiency,better analysis performance,and lots of parallel channels can be fabricated for multiple sample analysis.In present,the combination of microfluidic chip and microarray chip has been widely reported,specific hybridization method has been developed and the advantages have been demonstrated experimentally and theoretically.This review presents the research advances of microfluidic chip based microarray analysis,mainly including the specific hybridization procedures,improvement measures and mathematical modeling of hybridization.The progress in other steps has also been introduced.In addition,the disadvantages and advantages by combining microfluidic and microarray technologies are discussed.

CLC Number: 

[1] Manz A, Graber N, Widemer H M. Sens. Acturators B, 1990, 1: 244—288
[2] 肖守军(Xiao S H), 陈凌(Chen L), 许宁(Xu L). 化学进展(Progress in Chemistry), 2009, 21(11): 2397—2410
[3] Noerholm M, Bruus H, Jakobsen M H, Telleman P, Ramsing N B. Lab Chip, 2004, 4: 28—37
[4] Keramas G, Perozziello G, Geschke O, Christensen C B V. Lab Chip, 2004, 4: 152—158
[5] Peytavi R, Raymond F R, Gagne D, Picard F J, Jia G Y, Zoval J, Madou M, Boissinot K, Boissinot M, Bissonnette L, Ouellette M, Bergeron M G. Clin. Chem., 2005, 51: 1836—1844
[6] Lee H H, Smoot J, Murray Z M, Stahl D A, Yager P. Lab Chip, 2006, 6: 1163—1170
[7] Liu J, Williams B A, Gwirtz R M, Wold B J, Quake S. Angew. Chem. Int. Ed., 2006, 45: 3618—3623
[8] Wei C W, Cheng J Y, Huang C T, Yen M H, Young T H. Nucleic Acids Res., 2005, 33: art. no. e78
[9] Erickson D, Liu X Z, Krull U, Li D Q. Anal. Chem., 2004, 76: 7269—7277
[10] Erickson D, Liu X Z, Venditti R, Li D Q, Krull U J. Anal. Chem., 2005, 77: 4000—4007
[11] Jia G Y, Ma K S, Kim J, Zoval J V, Peytavi R, Bergeron M G, Madou M J. Sens. Actuators B, 2006, 114: 173—181
[12] Wang L, Li P C H. J. Agric. Food Chem., 2007, 55: 10509—10516
[13] Peng X Y, Li P C H, Yu H Z, Parameswaran M, Chou W L. Sens. Actuators B, 2007, 128: 64—69
[14] Wang L, Li P C H. Anal. Biochem., 2010, 400: 282—288
[15] Chen H, Wang L, Li P C H. Lab Chip, 2008, 8: 826—829
[16] Pregibon D C, Toner M, Doyle P S. Science, 2007, 315: 1393—1396
[17] Tan W S, Lewis C L, Horelik N E, Pregibon D C, Doyle P S, Yi H. Langmuir, 2008, 24: 12483—12488
[18] Pregibon D C, Doyle P S. Anal. Chem., 2009, 81: 4873—4881
[19] Yuen P K, Li G S, Bao Y J, Muller U R. Lab Chip, 2003, 3: 46—50
[20] Bynum M A, Gordon G B. Anal. Chem., 2004, 76: 7039—7044
[21] Lenigk R, Liu R H, Athavale M, Chen Z J, Ganser D, Yang J N, Rauch C, Liu Y J, Chan B, Yu H N, Ray M, Marrero R, Grodzinski P. Anal. Biochem., 2002, 311: 40—49
[22] Chung Y C, Lin Y C, Shiu M Z, Chang W N T. Lab Chip, 2003, 3: 228—233
[23] Chung Y C, Lin Y C, Hsu Y L, Chang W N T, Shiu M Z. J. Micromech. Microeng., 2004, 14: 1376—1383
[24] Chung Y C, Lin Y C, Chueh C D, Ye C Y, Lai L W, Zhao Q L. Electrophoresis, 2008, 29: 1859—1865
[25] Petersen J, Poulsen L, Petronis S, Birgens H, Dufva M. Nucleic Acids Res., 2008, 36: art. no. e10
[26] Benn J A, Hu J, Hogan B J, Fry R C, Samson L D, Thorsen T. Anal. Biochem., 2006, 348: 284—293
[27] Kim J H S, Marafie A, Jia X Y, Zoval J V, Madou M J. Sens. Actuators B, 2006, 113: 281—289
[28] Das S, Subramanian K, Chakraborty S. Colloids Surf. B, 2007, 58: 203—217
[29] Bishop J, Blair S, Chagovetz A. Biosens. Bioelectron., 2007, 22: 2192—2198
[30] Lambert R A, Das S, Madou M J, Chakraborty S, Rangel R H. Int. J. Heat Mass Transfer, 2008, 51: 4367—4378
[31] Das S, Chakraborty S. AlChE J., 2007, 53: 1086—1099
[32] Erickson D, Li D Q, Krull U J. Anal. Biochem., 2003, 317: 186—200
[33] Bishop J, Blair S, Chagovetz A M. Biophys. J., 2006, 90: 831—840
[34] Fodor S P A, Read J L, Pirrung M C. Science, 1991, 251: 767—773
[35] Schena M, Shalon D, Davis R W, Brown P O. Science, 1995, 20: 467—470
[36] Frank R. Tetrahedron, 1992, 48: 9217—9232
[37] 余志文(Yu Z W), 于军(Yu J), 徐静平(Xu J P), 周文利(Zhou W L). 微电子学(Microelectronics), 2001, 31(2): 100—102
[38] Zhang L G, Liu J F, Lu Z H. Science, 1998, 5: 713—715
[39] Moorcroft M J, Meuleman W R A, Latham S G, Nicholls T J, Egeland R D, Southern E M. Nucleic Acids Res., 2005, 33: e75
[40] Cheng J Y, Chen H Y. Biotechnol. Bioeng., 2009, 104: 400—407
[41] Zhou X C, Cai S Y, Hong A L, You Q M, Yu P L, Sheng N J, Srivannavit O, Muranjan S, Rouillard J M, Xia Y M, Zhang X L, Xiang Q, Ganesh R, Zhu Q, Matejko A, Gulari E, Gao X L. Nucleic Acids Res., 2004, 32: 5409—5417
[42] Srivannavit O, Gulari M, Hua Z S, Gao X L, Zhou X C, Hong A L, Zhou T C, Gulari E. Sens. Actuators B, 2009, 140: 473—481
[43] Tian J D, Gong H, Sheng N J, Zhou X C, Gulari E, Gao X L, Church G. Nature, 2004, 432: 1050—1054
[44] 方肇伦(Fang Z L). 微流控分析芯片(Microfluidic Analytical Chips). 北京:科学出版社(Beijing:Science Press), 2003
[45] Belosludtsev Y, Iverson B, Lemeshko S, Eggers R, Wiese R, Lee S, Powdrill T, Hogan M. Anal. Biochem., 2001, 292: 250—256
[46] Schlapak R, Pammer P, Armitage D, Zhu R, Hinterdorfer P, Vaupel M, Fruhwirth T, Howorka S. Langmuir, 2006, 22: 277—285
[47] Regenberg B, Kruhne U, Beyer M, Pedersen L H, Simon M, Thomas O R T, Nielsen J, Ahl T. Lab Chip, 2004, 4: 654—657
[48] Goddard J M, Erickson D. Anal. Bioanal. Chem., 2009, 394: 469—479
[49] Liu D J, Perdue R K, Sun L, Crooks R M. Langmuir, 2004, 20: 5905—5910
[50] Sui G D, Wang J Y, Lee C C, Lu W X, Lee S P, Leyton J V, Wu A M, Tseng H R. Anal. Chem., 2006, 78: 5543—5551
[51] Cretich M, Sedini V, Damin F, Carlo G D, Oldani C, Chiari M. Sens. Actuators B, 2008, 132: 258—264
[52] Situma C, Wang Y, Hupert M, Barany F, McCarley R L, Soper S A. Anal. Biochem., 2005, 340: 123—135
[53] Zhao Z S, Peytavi R, Diaz-Quijada G A, Picard F J, Huletsky A, Leblanc E, Frenette J, Boivin G, Veres T, Dumoulin M M, Bergeron M G. J. Clin. Microbiol., 2008, 46: 3752—3758
[54] Li Y C, Wang Z, Ou L M L, Yu H Z. Anal. Chem., 2007, 79: 426—433
[55] Pu Q S, Oyesanya O, Thompson B, Liu S T, Alvarez J C. Langmuir, 2007, 23: 1577—1583
[56] Geissler M, Roy E, Diaz-Quijada G A, Galas J C, Veres T. ACS Appl. Mater. Interfaces, 2009, 1: 1387—1395
[57] Sabourin D, Petersen J, Snakenborg D, Brivio M, Gudnadson H, Wolff A, Dufva M. Biomed. Microdevices, 2010, 12: 673—681
[58] Saaem I, Ma K S, Marchi A N, LaBean T H, Tian J D. ACS Appl. Mater. Interfaces, 2010, 2: 491—497
[59] Marie R, Schmid S, Johansson A, Ejsing L, Nordstrom M, Hafliger D, Christensen C B V, Boisen A, Dufva M. Biosens. Bioelectron., 2006, 21: 1327—1332
[60] Wang L, Li P C H, Yu H Z, Parameswaran A M. Anal. Chim. Acta, 2008, 610: 97—104
[61] Li C Y, Dong X L, Qin J H, Lin B C. Anal. Chim. Acta, 2009, 640: 93—99
[62] Li C Y, Li H J, Qin J H, Lin B C. Electrophoresis, 2009, 30: 4270—4276
[63] Berdat D, Rodríguez A C M, Herrera F, Gijs M A M. Lab Chip, 2008, 8: 302—308
[64] Schuler T, Kretschmer R, Jessing S, Urban M, Fritzsche W, Moller R, Popp J. Biosens. Bioelectron., 2009, 25: 15—21
[65] Malic L, Veres T, Tabrizian M. Biosens. Bioelectron., 2009, 24: 2218—2224
[66] Lee H J, Goodrich T T, Corn R M. Anal. Chem., 2001, 73: 5525—5531
[67] Im H, Lesuffleur A, Lindquist N C, Oh S H. Anal. Chem., 2009, 81: 2854—2859
[68] Xu F, Datta P, Wang H, Gurung S, Hashimoto M, Wei S Y, Goettert J, McCarley R L, Soper S A. Anal. Chem., 2007, 79: 9007—9013
[69] Suter J D, White I M, Zhu H Y, Shi H D, Caldwell C W, Fan X D. Biosens. Bioelectron., 2008, 23: 1003—1009
[70] 马立人(Ma L R), 蒋中华(Jiang Z H). 生物芯片(Biochip). 北京:化学工业出版社(Beijing:Chemical Industry Press), 2002
[71] Soper S A, Hashimoto M, Situma C, Murphy M C, McCarley R L, Cheng Y W, Barany F. Methods, 2005, 37: 103—113
[72] Hashimoto M, Hupert M L, Murphy M C, Soper S A. Anal. Chem., 2005, 77: 3243—3255
[73] Wang Y, Vaidya B, Farquar H D, Stryjewski W, Hammer R P, McCarley R L, Soper S A. Anal. Chem., 2003, 75: 1130—1140
[74] Hashimoto M, Barany F, Soper S A. Biosens. Bioelectron., 2006, 21: 1915—1923
[75] Wick L M, Rouillard J M, Whittam T S, Gulari E, Tiedje J M, Hashsham S A. Nucleic Acids Res., 2006, 34: art. no. e26
[76] Dodge A, Turcatti G, Lawrence I, de Rooij N F, Verpoorte E. Anal. Chem., 2004, 76: 1778—1787
[77] Bau S, Schracke N, Kranzle M, Wu H G, Stahler P F, Hoheisel J D, Beier M, Summerer D. Anal. Bioanal. Chem., 2009, 393: 171—175
[78] Summerer D, Wu H G, Haase B, Cheng Y, Schracke N, Stahler C F, Chee M S, Stahler P F, Beier M. Genome Res., 2009, 19: 1616—1621
[79] Summerer D, Schracke N, Wu H G, Cheng Y, Bau S, Stahler C F, Stahler P F, Beier M. Genomics, 2010, 95: 241—246
[80] Summerer D, Hevroni D, Jain A, Oldenburger O, Parker J, Caruso A, Stahler C F, Stahler P F, Beier M. New Biotechnology, 2010, 27: 149—155
[81] Petersen J, Poulsen L, Birgens H, Dufva M. PLoS ONE, 2009, 4: art. no. e4808S
[82] Liu Y J, Rauch C B, Stevens R L, Lenigk R, Yang J N, Rhine D B, Grodzinski P. Anal. Chem., 2002, 74: 3063—3070
[83] Liu R H, Yang J N, Lenigk R, Bonanno J, Grodzinski P. Anal. Chem., 2004, 76: 1824—1831
[84] Liu R H, Nguyen T, Schwarzkopf K, Fuji H S, Petrova A, Siuda T, Peyvan K, Bizak M, Danley D, McShea A. Anal. Chem., 2006, 78: 1980—1986
[85] Liu R H, Lodes M J, Nguyen T, Siuda T, Slota M, Fuji H S, McShea A. Anal. Chem., 2006, 78: 4184—4193
[86] Anderson R C, Su X, Bogdan G J, Fenton J. Nucleic Acids Res., 2000, 28: art. no. e60

[1] Jie Wang, Yaqing Feng, Bao Zhang. MOF-COF Hybrid Frameworks Materials [J]. Progress in Chemistry, 2022, 34(6): 1308-1320.
[2] Fangjuan Zhang, Haibing Liu, Mengqi Gao, Defu Wang, Yanbing Niu, Shaofei Shen. Concentration-Gradient Microfluidic Chips for Drug Screening [J]. Progress in Chemistry, 2021, 33(7): 1138-1151.
[3] Shuang Yang, Xianpeng Yang, Baojun Wang, Lei Wang. Design and Applications of Fluorogenic Nucleic Acid-Based Paper Biosensors [J]. Progress in Chemistry, 2021, 33(12): 2309-2315.
[4] Yan Huang, Guodong Liu, Xueji Zhang. Detection and Diagnosis of COVID-19 [J]. Progress in Chemistry, 2020, 32(9): 1241-1251.
[5] Xinyi Lai, Zhiyong Wang, Yongtai Zheng, Yongming Chen. Nanoscale Metal Organic Frameworks for Drug Delivery [J]. Progress in Chemistry, 2019, 31(6): 783-790.
[6] Cong Zhang, Qiaoli Yue, Lixia Tao, Yingying Hu, Chen-Zhong Li, Bo Tang. Construction of Photochemical Method and Cell Imaging Based on Nucleic Acid Probes [J]. Progress in Chemistry, 2019, 31(6): 858-871.
[7] Yangyang Zhou, Jian Zhong, Xiaojun Bian, Gang Liu, Liang Li, Juan Yan. Application of Signal Amplification Technology in the Area of Food Safety Detection [J]. Progress in Chemistry, 2018, 30(2/3): 206-224.
[8] Zheng Xiaohui, Xia Lixin, Mao Zongwan. The New Anticancer Platinum Complex Designed on the Basis of Nucleic Acid [J]. Progress in Chemistry, 2016, 28(7): 1029-1038.
[9] Jiang Yan, Xu Yi, Wang Renjie, Su Xi, Dong Chunyan. Application of Novel Nano Fluorescent Probes for Bacteria Detection on the Microchip [J]. Progress in Chemistry, 2015, 27(9): 1240-1250.
[10] Lei Xiangyang, Qiu Xianbo, Ge Shengxiang, Xia Ningshao, Chen Xing, Cui Dafu. CD4 +T Lymphocyte Counting Technologies Based on Microfluidic Chip [J]. Progress in Chemistry, 2015, 27(7): 870-881.
[11] Zhou Li, Deng Huiping, Zhang Wei. Research on Silver-Containing Visible-Light Photocatalysts [J]. Progress in Chemistry, 2015, 27(4): 349-360.
[12] Gui Zhen, Yan Feng, Li Jinchang, Ge Mengyuan, Ju Huangxian. Applications of Locked Nucleic Acid Molecular Beacons in Molecular Recognition and Bioanalysis [J]. Progress in Chemistry, 2015, 27(10): 1448-1458.
[13] Song Chunyuan, Yang Yanjun, Wang Lianhui. SERS-Based Nucleic Acid Detection [J]. Progress in Chemistry, 2014, 26(09): 1516-1526.
[14] Wang Xiaoping, Hong Xiayun, Zhan Shuyue, Huang Zihao, Pang Kai. Surface Plasmon Resonance Sensing Technology and Bioanalytical Instrument [J]. Progress in Chemistry, 2014, 26(07): 1143-1159.
[15] Liu Baoquan, Liu Qiang, Zhang Ji, Fan Shengdi, Yu Xiaoqi. Transfection of Nucleic Acids Mediated by Macrocyclic Polyamine-Based Liposomes [J]. Progress in Chemistry, 2013, 25(08): 1237-1245.