中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (01): 213-220 Previous Articles   Next Articles

• Review •

Sheddable Nanoparticles for Biomedical Application

Ren Tianbin, Feng Yue, Dong Haiqing, Li Lan, Li Yongyong   

  1. School of Material Science and Engineering, The Institute for Advanced Materials & Nano Biomedicine, Tongji University, Shanghai 200092, China
  • Received: Revised: Online: Published:
PDF ( 1217 ) Cited
Export

EndNote

Ris

BibTeX

The development of new intelligent drug carrier is one of the most critical challenges in cancer treatment.Nano-vehicles such as liposomes,polymeric micelles and lipoplexes are extensively investigated for this purpose.For successful drug delivery,one prerequisite is the long circulating time in vivo.Nanoparticles which used hydrophilic polymers as the “stealth” coating materials can prolong the circulating time via preventing the vehicles from the clearance by blood proteins and being uptaken by macrophages.However,hydrophilic coatings of nanoparticles may hamper the drug release and interaction with target cell after localizing at the pathological site,limiting the therapeutic effect.Presently,this dilemma could be circumvented by the development of the sheddable nanoparticles.Sheddable nanoparticles,which are capable of shedding their “outer layers” when needed,may facilitate the drug release as well as the interaction with the target cell.Herein,we present an overview of the recent work on sheddable nanoparticles with different “shedding” mechanisms,including pH-sensitivity,redox sensitivity and enzyme digestion,with an emphasis on their designs and biomedical applications.In addition,recent advances and perspectives of the sheddable nanoparticles are included.

CLC Number: 

[1] Torchilin V P. Nat. Rev. Drug. Discov., 2005, 4: 145—160
[2] Xiong S D, Li L, Jiang J, Tong L P, Wu S L, Xu Z S, Chu P K. Biomaterials, 2010, 31: 2673—2685
[3] Matsumoto S, Christie R J, Nishiyama N, Miyata K, Ishii A, Oba M, Koyama H, Yamasaki Y, Kataoka K. Biomacromolecules, 2009, 10: 119—127
[4] Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. J. Control. Release, 2000, 65: 271—284
[5] Torchilin V P, Trubetskoy V S. Adv. Drug. Deliv. Rev., 1995, 16: 141—155
[6] 李晓然(Li X R), 袁晓燕(Yuan X Y). 化学进展(Progress in Chemistry), 2007, 19: 973—981
[7] Metselaar J M, Bruin P, de Boer L W T, de Vringer T, Snel C, Oussoren C, Wauben M H M, Crommelin D J A, Storm G, Hennink W E. Bioconjugate Chem., 2003, 14: 1156—1164
[8] Boomer J A, Inerowicz H D, Zhang Z Y, Bergstrand N, Edwards K, Kim J M, Thompson D H. Langmuir, 2003, 19: 6408—6415
[9] Romberg B, Hennink W E, Storm G. Pharmaceutical Research, 2008, 25: 55—71
[10] Park C, Lim J, Yun M, Kim C. Angew. Chem. Int. Ed., 2008, 47: 2959—2963
[11] Martin G R, Jain R K. Cancer Res., 1994, 54: 5670—5674
[12] Engin K, Leeper D B, Cater J R, Thistlethwaite A J, Tupchong L, Mcfarlane J D. Int. J. Hyperther, 1995, 11: 211—216
[13] Van Sluis R, Bhujwalla Z M, Raghunand N, Ballesteros P, Alvarez J, Cerdan S, Galons J P, Gillies R J. Magn. Reson. Med., 1999, 41: 743—750
[14] Grunwald J, Rejtar T, Sawant R, Wang Z X, Torchilin V P. Bioconjugate Chem., 2009, 20: 1531—1537
[15] Torchilin V P. Adv. Drug. Deliv. Rev., 2008, 60: 548—558
[16] Masson C, Garinot M, Mignet N, Wetzer B, Mailhe P, Scherman D, Bessodes M. J. Control. Release, 2004, 99: 423—434
[17] Sawant R M, Hurley J P, Salmaso S, Kale A, Tolcheva E, Levchenko T S, Torchilin V P. Bioconjugate Chem., 2006, 17: 943—949
[18] Walker G F, Fella C, Pelisek J, Fahrmeir J, Boeckle S, Ogris M, Wagner E. Mol. Ther., 2005, 11: 418—425
[19] Lin S, Du F S, Wang Y, Ji S P, Liang D H, Yu L, Li Z C. Biomacromolecules, 2008, 9: 109—115
[20] Prabaharan M, Grailer J J, Pilla S, Steeber D A, Gong S Q. Biomaterials, 2009, 30: 5757—5766
[21] Rihova B, Etrych T, Pechar M, Jelinkova M, Stastny M, Hovorka O, Kovar M, Ulbrich K. J. Control. Release, 2001, 74: 225—232
[22] Yoo H S, Lee E A, Park T G. J. Control. Release, 2002, 82: 17—27
[23] Kale A A, Torchilin V P. Polym. Sci. Ser. A, 2009, 51: 730—737
[24] Jeong J H, Kim S W, Park T G. Bioconjugate Chem., 2003, 14: 473—479
[25] Oishi M, Nagatsugi F, Sasaki S, Nagasaki Y, Kataoka K. ChemBioChem, 2005, 6: 718—725
[26] Oishi M, Sasaki S, Nagasaki Y, Kataoka K. Biomacromolecules, 2003, 4: 1426—1432
[27] Knorr V, Ogris M, Wagner E. Pharm. Res-Dord., 2008, 25: 2937—2945
[28] Ding C X, Gu J X, Qu X Z, Yang Z Z. Bioconjugate Chem., 2009, 20: 1163—1170
[29] Kirpotin D, Hong K L, Mullah N, Papahadjopoulos D, Zalipsky S. Febs Lett., 1996, 388: 115—118
[30] Zhang J X, Zalipsky S, Mullah N, Pechar M, Allen T M. Pharm. Res-Dord., 2004, 49: 185—198
[31] Auguste D T, Armes S P, Brzezinska K R, Deming T J, Kohn J, Prud'homme R K. Biomaterials, 2006, 27: 2599—2608
[32] Sun H L, Guo B N, Cheng R, Meng F H, Liu H Y, Zhong Z Y. Biomaterials, 2009, 30: 6358—6366
[33] Klaikherd A, Nagamani C, Thayumanavan S. J. Am. Chem. Soc., 2009, 131: 4830—4838
[34] Oishi M, Hayama T, Akiyama Y, Takae S, Harada A, Yarnasaki Y, Nagatsugi F, Sasaki S, Nagasaki Y, Kataoka K. Biomacromolecules, 2005, 6: 2449—2454
[35] Takae S, Miyata K, Oba M, Ishii T, Nishiyama N, Itaka K, Yamasaki Y, Koyama H, Kataoka K. J. Am. Chem. Soc., 2008, 130: 6001—6009
[36] Maeda T, Fujimoto K. Colloid Surface B, 2006, 49: 15—21
[37] Hatakeyama H, Ito E, Akita H, Oishi M, Nagasaki Y, Futaki S, Harashima H. J. Control. Release, 2009, 139: 127—132
[38] Ishida T, Ichikawa T, Ichihara M, Sadzuka Y, Kiwada H. J. Control. Release, 2004, 95: 403—412
[39] Romberg B, Oussoren C, Snel C J, Carstens M G, Hennink W E, Storm G. Biochimica et Biophysica Acta-Biomembranes, 2007, 1768: 737—743
[40] Romberg B, Metselaar J M, de Vringer T, Motonaga K,den Bosch J J K, Oussoren C, Storm G, Hennink W E. Bioconjugate Chem., 2005, 16: 767—774
[41] Romberg B, Flesch F M, Hennink W E, Storm G. Int. J. Pharm., 2008, 355: 108—113
[42] Xu H, Deng Y H, Chen D W, Hong W W, Lu Y, Dong X H. J. Control. Release, 2008, 130: 238—245
[43] Dong H Q, Li Y Y, Cai S J, Zhuo R X, Zhang X Z, Liu L J. Angew. Chem., 2008, 120: 5655—5658

[1] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[2] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[3] Feng Lu, Ting Zhao, Xiaojun Sun, Quli Fan, Wei Huang. Design of NIR-Ⅱ Emissive Rare-earth Nanoparticles and Their Applications for Bio-imaging [J]. Progress in Chemistry, 2022, 34(6): 1348-1358.
[4] Xiaofeng Chen, Kaiyuan Wang, Fangming Liang, Ruiqi Jiang, Jin Sun. Exosomes Drug Delivery Systems and Their Application in Tumor Treatment [J]. Progress in Chemistry, 2022, 34(4): 773-786.
[5] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.
[6] Dandan Zhang, Qi Wu, Guangbo Qu, Jianbo Shi, Guibin Jiang. Quantitative Analysis of Metal Nanoparticles in Unicellular Aquatic Organisms [J]. Progress in Chemistry, 2022, 34(11): 2331-2339.
[7] Dong Yang, Keyi Gao, Baiqin Yang, Lei Lei, Lixia Wang, Chaohua Xue. Classification of Microfluidic System and Applications in Nanoparticles Synthesis [J]. Progress in Chemistry, 2021, 33(3): 368-379.
[8] Chen Liu, Qiangxiang Li, Di Zhang, Yujie Li, Jinquan Liu, Xilin Xiao. Preparation and Application of MCM-41 Mesoporous Silica in the DNA Biosensors [J]. Progress in Chemistry, 2021, 33(11): 2085-2102.
[9] Ding Jingjing, Lili Huang, Haiyan Xie. Application of Nanoparticles-Based Chemiluminescence in Diagnosis and Treatment of Inflammation and Tumor [J]. Progress in Chemistry, 2020, 32(9): 1252-1263.
[10] Miao Qin, Mengjie Xu, Di Huang, Yan Wei, Yanfeng Meng, Weiyi Chen. Iron Oxide Nanoparticles in the Application of Magnetic Resonance Imaging [J]. Progress in Chemistry, 2020, 32(9): 1264-1273.
[11] Jianlin Shi, Zile Hua. Condensed State Chemistry in the Synthesis of Inorganic Nano- and Porous Materials [J]. Progress in Chemistry, 2020, 32(8): 1060-1075.
[12] Fenming Zhang, Yushu Tian, Ji Zheng, Kun Chen, Anchao Feng, Liqun Zhang. Biomedical Functional Polymer Based on PHPMA [J]. Progress in Chemistry, 2020, 32(2/3): 331-343.
[13] Rui Bai, Xiaochun Tian, Shuhua Wang, Weifu Yan, Haiyin Gang, Yong Xiao. Noble Metal Nanoparticles Produced by Microorganism [J]. Progress in Chemistry, 2019, 31(6): 872-881.
[14] Qiwei Ying, Jianguo Liao, Minhang Wu, Zhihao Zhai, Xinru Liu. Research on Bioactive Glass Nanospheres as Delivery [J]. Progress in Chemistry, 2019, 31(5): 773-782.
[15] Yihuan Liu, Xin Hu, Ning Zhu, Kai Guo. Microfluidic Synthesis of Micro-and Nanoparticles [J]. Progress in Chemistry, 2018, 30(8): 1133-1142.