中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (01): 202-212 Previous Articles   Next Articles

• Review •

Biomacromolecule-based Nanoparticle Drug Carriers

Chen Mengjie, Yao Jinrong, Shao Zhengzhong, Chen Xin   

  1. The Key Laboratory of Molecular Engineering of Polymers of MOE, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
  • Received: Revised: Online: Published:
PDF ( 3142 ) Cited
Export

EndNote

Ris

BibTeX

Biomacromolecules have attracted more and more attentions on drug carriers (especially in the application of nanoparticle drug carriers) in recent years because of their renewability,nontoxicity,biocompatibility,biodegradability and mucoadhesive ability.The common methods for the preparation of biomacromolecule-based nanopaticles,including emulsion method,self-assembly method and ionic-gelation method are introduced in this review in the first part.Among these methods,the self-assembly method and the ionic-gelation method are more promising because the emulsion method may affect the biocompatibility of the biomacromolecules to a certain extent.Since proteins contain both hydrophilic and hydrophobic segments and polysacchairde can be modified with the hydrophobic molecules,the self-assembly method is those amphiphilic biomacromolecules,for instance proteins and polysaccharide derivatives that contain both hydrophilic and hydrophobic segments,to form nanoparticles by self-assembly via electrostatic interaction,hydrophobic interaction and van der Waals' force.The ionic-gelation method is those polyelectrolytes,for instance proteins and polysaccharide that can be charged under certain condition,to form nanoparticles via the electrostatic interaction with the oppositely charged materials.It can be further divided into several concrete methods,such as ionic crosslinking,polyelectrolyte complex formation,layer-by-layer assembly and template polymerization.In the second part of this review,the progress in the application of these biomacromolecule-based nanoparticles as protein drug,anti-tumor drug,and gene drug carriers is summarized.The results show that these biomacromolecule-based nanoparticle drug carries have great potential in the drug controlled released system.

CLC Number: 

[1] Farokhzad O C, Langer R. ACS Nano, 2009, 3: 16—20
[2] Rosler A, Vandermeulen G W M, Klok H A. Adv. Drug Delivery Rev., 2001, 53: 95—108
[3] Wolinsky J B, Grinstaff M W. Adv. Drug Delivery Rev., 2008, 60: 1037—1055
[4] Bhattacharya R, Mukherjee P. Adv. Drug Delivery Rev., 2008, 60: 1289—1306
[5] Slowing II, Vivero-Escoto J L, Wu C W, Lin V S Y. Adv. Drug Delivery Rev., 2008, 60: 1278—1288
[6] Duncan R, Izzo L. Adv. Drug Delivery Rev., 2005, 57: 2215—2237
[7] Gaspar R, Duncan R. Adv. Drug Delivery Rev., 2009, 61: 1220—1231
[8] Vega-Villa K R, Takemoto J K, Yanez J A, Remsberg C M. Adv. Drug Delivery Rev., 2008, 60: 929—938
[9] Hirano S. Polym. Int., 1999, 48: 732—734
[10] Horan R L, Antle K, Collette A L, Huang Y Z, Moreau J E, Volloch V, Kaplan D L, Altman G H. Biomaterials, 2005, 26: 3385—3393
[11] Rubino O P, Kowalsky R, Swarbrick J. Pharm. Res., 1993, 10: 1059—1065
[12] Liu Z H, Jiao Y P, Wang Y F, Zhang Z Y. Adv. Drug Delivery Rev., 2008, 60: 1650—1662
[13] Kreuter J. Int. J. Pharm., 2007, 33: 1—10
[14] Hawkins M J, Soon-shiong P, Desai N. Adv. Drug Delivery Rev., 2008, 60: 876—885
[15] Gallo J M, Hung C T, Perrier D G. Int. J. Pharm., 1984, 22: 63—74
[16] Muller B G, Leuenberger H, Kissel T. Pharm. Res., 1996, 13: 32—37
[17] Jameela S R, Jayakrishnan A. Biomaterials, 1995, 16: 769—775
[18] Conti B, Modena T, Genta I, Pavanetto F. Drug Delivery, 1998, 5: 87—93
[19] Oliveira B F, Santana M H A, Re M I J. Chem. Eng., 2005, 22: 353—360
[20] Srisuwan Y, Srihanam P, Baimark Y J. Macromol. Sci. A, 2009, 46: 521—525
[21] Ethirajan A, Schoeller K, Musyanovych A, Ziener U, Landfester K. Biomacromolecules, 2008, 9: 2383—2389
[22] Marty J J, Oppenheim R C, Speiser P. Pharm. Acta Helvetiae, 1978, 53: 17—23
[23] Lin W, Coombes A G A, Garnett M C, Davies M C, Schacht E, Davis S S, Illum L. Pharm. Res., 1994, 11: 1588—1592
[24] Langer K, Balthasar S, Vogel V, Dinauer N, von Briesen H, Schubert D. Int. J. Pharm., 2003, 257: 169—180
[25] Weber C, Kreuter J, Langer K. Int. J. Pharm., 2000, 196: 197—200
[26] Merodio M, Arnedo A, Renedo M J, Irache J M. Eur. J. Pharm. Sci., 2001, 12: 251—259
[27] Wang G L, Siggers K, Zhang S F, Jiang H X, Xu Z H. Pharm. Res., 2008, 25: 2896—2909
[28] Balthasar S, Michaelis K, Dinauer N, von Briesen H, Kreuter J, Langer K. Biomaterials, 2005, 26: 2723—2732
[29] Azarmi S, Huang Y, Chen H, Mcouarrie S, Abrams D, Roa W, Finlay W H, Miller G G, Lobenberg R. J. Pharm. Pharm. Sci., 2006, 9: 124—132
[30] Mita K, Ichimura S, James T C. J. Mol. Evol., 1994, 38: 583—592
[31] Valluzzi R, He S J, Gido S P, Kaplan D. Int. J. Biol. Macromol., 1999, 24: 227—236
[32] Wang X Q, Yucel T, Lu Q, Hu X, Kaplan D L. Biomaterials, 2010, 31: 1025—1035
[33] Zhang Y Q, Shen W D, Xiang R L, Zhuge L J, Gao W J. J. Nanopart. Res., 2007, 9: 885—900
[34] Cao Z B, Chen X, Yao J R, Huang L, Shao Z Z. Soft Matter, 2007, 3: 910—915
[35] Lee K Y, Jo W H, Kwon I C, Kim Y H, Jeong S Y. Langmuir, 1998, 14: 2329—2332
[36] Dufes C, Schatzlein A G, Tetley L, Gray A I, Watson D G, Olivier J C, Couet W, Uchegbu I F. J. Pharm. Res., 2000, 17: 1250—1258
[37] Kwon S, Park J H, Chung H, Kwon I C, Jeong S Y, Kim I S. Langmuir, 2003, 19: 10188—10193
[38] Park J S, Han T H, Lee K Y, Han S S, Hwang J J, Moon D H, Kim S Y, Cho Y W. J. Control. Release, 2006, 115: 37—45
[39] Miwa A, Ishibe A, Nakano M, Yamahira T, Itai S, Jinno S, Kawahara H. Pharm. Res., 1998, 15: 1844—1850
[40] Zhang L Y, Sun M J, Guo R, Jiang Z P, Liu Y, Jiang X Q, Yang C Z. J. Nanosci. Nanotech., 2006, 6: 2912—2920
[41] Zhao Z M, He M, Yin L C, Bao J M, Shi L L, Wang B Q, Tang C, Yin C H. Biomacromolecules, 2009, 10: 565—572
[42] Hornig S, Heinze T. Carbohyd. Polym., 2007, 68: 280—286
[43] Hornig S, Heinze T. Biomacromolecules, 2008, 9: 1487—1492
[44] Reis A V, Guilherme M R, Paulino A T, Muniz E C, Mattoso L H C, Tarnbourgi E B. Langmuir, 2009, 25: 2473—2478
[45] Choi K Y, Min K H, Na J H, Choi K, Kim K, Park J H, Kwon I C, Jeong S Y. J. Mater. Chem., 2009, 19: 4102—4107
[46] Calvo P, RemunanLopez C, VilaJato J L, Alonso M J. J. Appl. Polym. Sci., 1997, 63: 125—132
[47] Janes K A, Fresneau M P, Marazuela A, Fabra A, Alonso M J. J. Control. Release, 2001, 73: 255—267
[48] Vila A, Sanchez A, Tobio M, Calvo P, Alonso M J. J. Control. Release, 2002, 78: 15—24
[49] Lopez-Leon T, Carvalho E L S, Seijo B, Ortega-Vinuesa J L, Bastos-Gozlez D. J. Colloid. Interf. Sci., 2005, 283: 344—351
[50] Amidi M, Romeijn S G, Borchard G, Junginger H E, Hennink W E, Jiskoot W. J. Control. Release, 2006, 111: 107—116
[51] Zahoor A, Sharma S, Khuller G K. Int. J. Antimicrob. Agents, 2005, 26: 298—303
[52] Sarmento B, Martins S, Ribeiro A, Veiga F, Neufeld R, Ferreira D. Int. J. Pept. Res. Ther., 2006, 12: 131—138
[53] Chen Y, Mohanraj V J, Parkin J E. 5th Australian Peptide Conference: Australia, 2003. 621—629
[54] Chen Y, Mohanraj V J, Wang F, Benson H A E. AAPS PharmSciTech, 2007, 8: art. no. 98
[55] Goycoolea F M, Lollo G, Remunan-Lopez C, Quaglia F, Alonso M J. Biomacromolecules, 2009, 10: 1736—1743
[56] Hu J H, Yu S Y, Yao P. Langmuir, 2007, 23: 6358—6364
[57] Yu S Y, Hu J H, Pan X Y, Yao P. Langmuir, 2006, 22: 2754—2759
[58] Itoh Y, Matsusaki M, Kida T, Akashi M. Biomacromolecules, 2006, 7: 2715—2718
[59] Shenoy D B, Sukhorukov G B. Bioscience, 2005, 5: 451—458
[60] Haidar Z S, Hamdy R C, Tabrizian M. Biomaterials, 2008, 29: 1207—1215
[61] Hu Y, Jiang X Q, Ding Y, Chen Q, Yang C Z. Adv. Mater., 2004, 16: 933—937
[62] De Moura M R, Aouada F A, Mattoso L H C J. Colloid Interf. Sci., 2008, 321: 477—483
[63] Wang Y S, Zhang Y W, Du W P, Wu C X, Zhao J X. J. Colloid Interf. Sci., 2009, 334: 153—160
[64] Lin Y H, Mi F L, Chen C T, Chang W C, Peng S F, Liang H F, Sung H W. Biomacromolecules, 2007, 8: 146—152
[65] Sarmento B, Ribeiro A, Veiga F, Ferreira D, Neufeld R. Biomacromolecules, 2007, 8: 3054—3060
[66] Yan H B, Zhang Y Q, Ma Y L, Zhou L X. J. Nanopart. Res., 2009, 11: 1937—1946
[67] Wang X Q, Wenk E, Matsumoto A, Meinel L, Li C M, Kaplan D L. J. Control. Release, 2007, 117: 360—370
[68] Min K H, Park K, Kim Y S, Bae S M, Lee S, Jo H G, Park R W, Kim I S, Jeong S Y, Kim K, Kwon I C. J. Control. Release, 2008, 127: 208—218
[69] Kim J H, Kim Y S, Kim S, Park J H, Kim K, Choi K, Chung H, Jeong S Y, Park R W, Kim I S, Kwon I C. J. Control. Release, 2006, 111: 228—234
[70] Park J H, Kwon S, Lee M, Chung H, Kim J H, Kim Y S, Park R W, Kim I S, Seo S B, Kwon I C, Jeong S Y. Biomaterials, 2006, 27: 119—126
[71] Tseng C L, Su W Y, Yen K C, Yang K C, Lin F H. Biomaterials, 2009, 30: 3476—3485
[72] Truong-Le V L, August J T, Leong K W. Hum. Gene Ther., 1998, 9: 1709—1717
[73] Truong-Le V L, Walsh S M, Schweibert E, Mao H Q, Guggino W B. Arch. Biochem. Biophys., 1999, 361: 47—56
[74] Corsi K, Chellat F, Yahia L, Fernandes J C. Biomaterials, 2003, 24: 1255—1264

[1] Ying Xu, Tingting Gao, Qixiao Wang, Yang Qu, Hongfei Liu, Yuanrong Xin. Preparation Technologies of the Polymer-Based MONOLITH Material and Its Application as Stationary Phase of Affinity Chromatography for the Separation of Biological Macromolecules [J]. Progress in Chemistry, 2018, 30(8): 1112-1120.
[2] Xiangming Na, Weiqing Zhou, Juan Li, Zhiguo Su, Guanghui Ma. Preparation and Application of Porous Polymer Microspheres in Virus-Like Particles Purification [J]. Progress in Chemistry, 2018, 30(1): 5-13.
[3] Xiong Xingquan*, Jiang Yunbing. Reversible Diels-Alder Reaction [J]. Progress in Chemistry, 2013, 25(06): 999-1011.
[4] Qiu Suyan, Gao Sen, Lin Zhenyu, Chen Guonan. Advances in Click Chemistry [J]. Progress in Chemistry, 2011, 23(4): 637-648.
[5] Sun Jiekan Wang Xuefei Ji Jian. Layer-by-Layer Assembly: the New Approach for Advanced Drug Release System [J]. Progress in Chemistry, 2009, 21(12): 2682-2688.