中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (01): 153-164 Previous Articles   Next Articles

• Review •

Near-Infrared Lanthanide Luminescence for Functional Materials

Liu Zheng, Sun Lining, Shi Liyi, Zhang Dengsong   

  1. Research Center of Nano Science and Technology, Shanghai University, Shanghai 200444, China
  • Received: Revised: Online: Published:
PDF ( 3139 ) Cited
Export

EndNote

Ris

BibTeX

Near-infrared (NIR) luminescent lanthanide materials are attractive due to their unique optical and chemical features, such as characteristic sharp luminescence, good photostability and low toxicity. Recently, startling interests for NIR luminescent lanthanide materials have been attracted for their highlighted value in the applications of fiber-optic communications, laser systems, bio-sensing and bio-imaging analysis, etc. NIR luminescent lanthanide materials have been developed as a new class of luminescent optical labels that have become promising alternatives to organic fluorophores and quantum dots for applications in biological assays and medical imaging. These lanthanide luminescent probes offer low autofluorescence background, large Stokes shifts, high resistance to photobleaching, high penetration depth and temporal resolution; such techniques also show potential for improving the selectivity and sensitivity of detecting methods. Different kinds of luminescent materials fabricated by lanthanides (upconversion nanocrystals, mesoporous materials, micelles, lanthanide metal-organic framework, ionic liquids and ionogels) exhibit various NIR luminescent properties, which are attributed to the distinct mechanisms of sensitisation. However, the sensitisation of NIR luminescence remains a real challenge. By summarizing the latest developments in the field of NIR lanthanide luminescent materials in this review, we show distinct design ideas on the NIR lanthanide luminescence, describe various NIR luminescent lanthanide functional materials, and evaluate the features and advantages of near-infrared luminescent materials for the developing trends in the future.

CLC Number: 

[1] Pogue B, Jiang S D, Dehghani H. Alternative Breast Imaging. Chapter 10. Boston: Springer, 2005. 201—226
[2] Wu S, Han G, Milliron D J, Aloni S, Altoe V, Talapin D V, Cohen B E, Schuck P J. Proc. Nat. Acad. Sci. USA, 2009, 106: 10917—10921
[3] Bünzli J C G. Chem. Rev., 2010, 110: 2729—2755
[4] Moore E G, Samuel A P S, Raymond K N. Acc. Chem. Res., 2009, 42: 542—552
[5] Sinha S P. Systematics and the Properties of the Lanthanides. Braunlage: Springer, 1983
[6] Slooff L H, van Blaaderen A, Polman A, Hebbink G A, Klink S I, van Veggel F C J M, Reinhoudt D N, Hofstraat J W. J. Appl. Phys., 2002, 91: 3955—3980
[7] Teh S K, Zheng W, Ho K Y, Teh M, Yeoh K G, Huang Z. Br. J. Cancer, 2008, 98: 457—465
[8] Werts M H V, Woudenberg R H, Emmerink P G, Gassel R V, Hofstraat J W, Verhoeven J W. Angew. Chem. Int. Ed., 2000, 39: 4542—4544
[9] Ronda C R. Luminescence: From Theory to Applications. Aachen: Wiley, 2007
[10] Wang F, Liu X G. Chem. Soc. Rev., 2009, 38: 976—989
[11] Psaila N D, Thomson R R, Bookey H T, Kar A K, Chiodo N, Osellame R, Cerullo G, Jha A, Shen S. Appl. Phys. Lett., 2007, 90: 131102—131103
[12] Kuriki K, Koike Y, Okamoto Y. Chem. Rev., 2002, 102:2347—2356
[13] Xie R J, Hirosaki N. Sci. Technol. Adv. Mat., 2007, 8: 588—600
[14] Stouwdam J W, van Veggel F C J M. Nano Lett., 2002, 2: 733—737
[15] Bo S H, Hu J, Chen Z, Wang Q, Xu G M, Liu X H, Zhen Z. Appl. Phys. B, 2009, 97: 665—669
[16] Hebbink G A, Stouwdam J W, Reinhoudt D N, van Veggel F C J M. Adv. Mater., 2002, 14: 1147—1150
[17] Rahman P, Green M. Nanoscale, 2009, 1: 214—224
[18] Yu X F, Chen L D, Li M, Xie M Y, Zhou L, Li Y, Wang Q Q. Adv. Mater., 2008, 20: 4118—4123
[19] Gao X, Cui Y, Levenson R M, Chung L W K, Nie S. Nat. Biotech., 2004, 22: 969—976
[20] Wang F, Tan W B, Zhang Y, Fan X P, Wang M Q. Nanotechnology, 2006, 17: R1—R13
[21] Wang F, Han Y, Lim C S, Lu Y H, Wang J, Xu J, Chen H Y, Zhang C, Hong M H, Liu X G. Nature, 2010, 463: 1061—1065
[22] Park Y I, Kim J H, Lee K T, Jeon K S, Na H B, Yu J H, Kim H M, Lee N, Choi S H, Baik S I, Kim H, Park S P, Park B J, Kim Y W, Lee S H, Yoon S Y, Song I C, Moon W K, Suh Y D, Hyeon T. Adv. Mater., 2009, 21: 4467—4471
[23] Wu J C, Tian Q W, Hu H, Xia Q, Zou Y, Li F Y, Yi T, Huang C H. Chem. Commun., 2009, 4100—4102
[24] Yu M X, Li F Y, Chen Z G, Hu H, Zhan C, Yang H, Huang C H. Anal. Chem., 2009, 81: 930—935
[25] Zhou J, Sun Y, Du X, Xiong L, Hu H, Li F. Biomaterials, 2010, 31: 3287—3295
[26] Nyk M, Kumar R, Ohulchanskyy T Y, Bergey E J, Prasad P N. Nano Lett., 2008, 8: 3834—3838
[27] Chen G, Ohulchanskyy T Y, Kumar R, Agren H, Prasad P N. ACS Nano, 2010, 4: 3163—3168
[28] Crosby G A, Whan R E, Alire R M. J. Chem. Phys., 1961, 34: 743—748
[29] Crosby G A, Whan R E, Freeman J J. J. Phys. Chem., 1962, 66: 2493—2499
[30] Whan R E, Crosby G A. J. Mol. Spectrosc., 1962, 8: 315—327
[31] Binnemans K, Grller-Walrand C. Chem. Rev., 2002, 102: 2303—2345
[32] Bünzli J C G, Piguet C. Chem. Soc. Rev., 2005, 34: 1048—1077
[33] Binnemans K. Chem. Rev., 2009, 109: 4283—4374
[34] Eliseeva S V, Bünzli J C G. Chem. Soc. Rev., 2010, 39: 189—227
[35] Shavaleev N M, Scopelliti R, Gumy F, Bünzli J C G. Inorg. Chem., 2009, 48: 7937—7946
[36] Hebbink G A, Reinhoudt D N, van Veggel F C J M. Eur. J. Org. Chem., 2001, 4101—4106
[37] Glover P B, Bassett A P, Nockemann P, Kariuki B M, Deun R V, Pikramenou Z. Chem. Eur. J., 2007, 13: 6308—6320
[38] Romanelli M, Kumar G A, Emge T J, Riman R E, Brennan J G. Angew. Chem. Int. Ed., 2008, 47: 6049—6051
[39] Binnemans K. in Handbook on the Physics and Chemistry of Rare Earths. Vol 35, Elsevier, 2005. 107—272
[40] Baek N S, Kim Y H, Eom Y K, Oh J H, Kim H K, Aebischer A, Gumy F, Chauvin A S, Bünzli J C G. Dalton Trans., 2010, 39: 1532—1538
[41] Zhang J, Petoud S. Chem. Eur. J., 2008, 14: 1264—1272
[42] Albrecht M, Fiege M, Osetska O. Coord. Chem. Rev., 2008, 252: 812—824
[43] Shavaleev N M, Scopelliti R, Gumy F, Bünzli J C G. Inorg. Chem., 2009, 48: 2908—2918
[44] Nonat A, Imbert D, Pecaut J, Giraud M, Mazzanti M. Inorg. Chem., 2009, 48: 4207—4218
[45] Albrecht M, Osetska O, Klankermayer J, Frhlich R, Gumy F, Bünzli J C G. Chem. Commun., 2007, 1834—1836
[46] Deun R V, Fias P, Nockemann P, Hecke K V, Meervelt L V, Binnemans K. Eur. J. Inorg. Chem., 2007, 302—305
[47] Shavaleev N M, Scopelliti R, Gumy F D R, Bünzli J C G. Inorg. Chem., 2008, 47: 9055—9068
[48] Shavaleev N M, Scopelliti R, Gumy F, Bünzli J C G. Inorg. Chem., 2009, 48: 7937—7946
[49] Oxley D S, Walters R W, Copenhafer J E, Meyer T Y, Petoud S P, Edenborn H M. Inorg. Chem., 2009, 48: 6332—6334
[50] Cable M L, Kirby J P, Levine D J, Manary M J, Gray H B, Ponce A. J. Am. Chem. Soc., 2009, 131: 9562—9570
[51] Belousoff M J, Ung P, Forsyth C M, Tor Y, Spiccia L, Graham B. J. Am. Chem. Soc., 2009, 131: 1106—1114
[52] Pizzoferrato R, Francini R, Pietrantoni S, Paolesse R, Mandoj F, Monguzzi A, Meinardi F. J. Phys. Chem. A, 2010, 114: 4163—4168
[53] Bünzli J C G, Piguet C. Chem. Soc. Rev., 2005, 34: 1048—1077
[54] Alexeev Y E, Kharisov B I, García T C H, Garnovskii A D. Coord. Chem. Rev., 2010, 254: 794—831
[55] Zhu X J, Wong W K, Guo J P, Wong W Y, Zhang J P. Eur. J. Inorg. Chem., 2008, 3515—3523
[56] He H S, Sykes A G. Inorg. Chem. Commun., 2008, 11: 1304—1307
[57] Jones J E, Pope S J A. Dalton Trans., 2009, 8421—8425
[58] Gregolinski J, Starynowicz P, Hua K T, Lunkley J L, Muller G, Lisowski J. J. Am. Chem. Soc., 2008, 130: 17761—17773
[59] Shavaleev N M, Moorcraft L P, Pope S J A, Bell Z R, Faulkner S, Ward M D. Chem. Eur. J., 2003, 9: 5283—5291
[60] Imbert D, Cantuel M, Bünzli J C G, Bernardinelli G, Piguet C. J. Am. Chem. Soc., 2003, 125: 15698—15699
[61] Li X L, Shi L X, Zhang L Y, Wen H M, Chen Z N. Inorg. Chem., 2007, 46: 10892—10900
[62] Xu H B, Zhang L Y, Chen X M, Li X L, Chen Z N. Crystal Growth & Design, 2009, 9: 569—576
[63] Warren S C, Messina L C, Slaughter L S, Kamperman M, Zhou Q, Gruner S M, DiSalvo F J, Wiesner U. Science, 2008, 320: 1748—1752
[64] Joo S H, Park J Y, Tsung C K, Yamada Y, Yang P, Somorjai G A. Nat. Mater., 2009, 8: 126—131
[65] Lee C H, Cheng S H, Wang Y J, Chen Y C, Chen N T, Souris J, Chen C T, Mou C Y, Yang C S, Lo L W. Adv. Funct. Mater., 2009, 19: 215—222
[66] Kim J, Kim H S, Lee N, Kim T, Kim H, Yu T, Song I C, Moon W K, Hyeon T. Angew. Chem. Int. Ed., 2008, 47: 8438—8441
[67] Rosenholm J, Sahlgren C, Lindén M. J. Mater. Chem., 2010, 20: 2707—2713
[68] Sun L N, Yu J B, Zhang H J, Meng Q G, Ma E, Peng C Y, Yang K Y. Microporous Mesoporous Mater., 2007, 98: 156—165
[69] Sun L N, Zhang H J, Yu J B, Yu S Y, Peng C Y, Dang S, Guo X M, Feng J. Langmuir, 2008, 24: 5500—5507
[70] Taylor K M L, Kim J S, Rieter W J, An H, Lin W, Lin W. J. Am. Chem. Soc., 2008, 130: 2154—2155
[71] Feng J, Song S Y, Deng R P, Fan W Q, Zhang H J. Langmuir, 2009, 26: 3596—3600
[72] Lee J E, Lee N, Kim H, Kim J, Choi S H, Kim J H, Kim T, Song I C, Park S P, Moon W K, Hyeon T. J. Am. Chem. Soc., 2009, 132: 552—557
[73] dos Santos C M G, Harte A J, Quinn S J, Gunnlaugsson T. Coord. Chem. Rev., 2008, 252: 2512—2527
[74] Uchiyama S, McClean G D, Iwai K, de Silva A P. J. Am. Chem. Soc., 2005, 127: 8920—8921
[75] Diaz-Fernandez Y, Foti F, Mangano C, Pallavicini P, Patroni S, Perez-Gramatges A, Rodriguez-Calvo S. Chem. Eur. J., 2006, 12: 921—930
[76] Bonnet C S, Pellegatti L, Buron F, Shade C M, Villette S, Kubí Acˇ ek V, Guillaumet G, Suzenet F, Petoud S, Tóth E. Chem. Commun., 2010, 124—126
[77] Hong Y, Lam J W Y, Tang B Z. Chem. Commun., 2009, 4332—4353
[78] Pellegatti L, Zhang J, Drahos B, Villette S, Suzenet F, Guillaumet G, Petoud S, Tóth . Chem. Commun., 2008, 6591—6593
[79] Kirchner B. Ionic Liquids. Berlin: Springer, 2010. 1—339
[80] Binnemans K. Chem. Rev., 2007, 107: 2592—2614
[81] Stumpf S, Billard I, Panak P J, Mekki S. Dalton Trans., 2007, 240—248
[82] Stumpf S, Billard I, Gaillard C, Panak P J, Dardenne K. Inorg. Chem., 2008, 47: 4618—4626
[83] Lunstroot K, Baeten L, Nockemann P, Martens J, Verlooy P, Ye X, Grller-Walrand C, Binnemans K, Driesen K. J. Phys. Chem. C, 2009, 113: 13532—13538
[84] Lunstroot K, Nockemann P, van Hecke K, van Meervelt L, Grller-Walrand C, Binnemans K, Driesen K. Inorg. Chem., 2009, 48: 3018—3026
[85] Nockemann P, Beurer E, Driesen K, Deun R V, Hecke K V, Meervelt L V, Binnemans K. Chem. Commun., 2005, 4354—4356
[86] Lunstroot K, Driesen K, Nockemann P, Grller-Walrand C, Binnemans K, Bellayer S, le Bideau J, Vioux A. Chem. Mat., 2006, 18: 5711—5715
[87] Lunstroot K, Driesen K, Nockemann P, Hecke K V, Meervelt L V, Grller-Walrand C, Binnemans K, Bellayer S, Viau L, Bideau J L, Vioux A. Dalton Trans., 2009, 298—306
[88] Feng Y, Li H R, Gan Q Y, Wang Y G, Liu B Y, Zhang H J. J. Mater. Chem., 2010, 20: 972—975
[89] Gbel R, Friedrich A, Taubert A. Dalton Trans., 2010, 39: 603—611
[90] Deng H, Doonan C J, Furukawa H, Ferreira R B, Towne J, Knobler C B, Wang B, Yaghi O M. Science, 2010, 327: 846—850
[91] Jain P, Ramachandran V, Clark R J, Zhou H D, Toby B H, Dalal N S, Kroto H W, Cheetham A K. J. Am. Chem. Soc., 2009, 131: 13625—13627
[92] Lin X, Telepeni I, Blake A J, Dailly A, Brown C M, Simmons J M, Zoppi M, Walker G S, Thomas K M, Mays T J, Hubberstey P, Champness N R, Schrder M. J. Am. Chem. Soc., 2009, 131: 2159—2171
[93] Zaworotko M J. Nature, 2008, 451: 410—411
[94] Han S S, Mendoza-Cortés J L, Goddard W A Ⅲ. Chem. Soc. Rev., 2009, 38: 1460—1476
[95] Düren T, Bae Y S, Snurr R Q. Chem. Soc. Rev., 2009, 38: 1237—1247
[96] Maspoch D, Ruiz-Molina D, Veciana J. Chem. Soc. Rev., 2007, 36: 770—818
[97] Suh M P, Cheon Y E, Lee E Y. Coord. Chem. Rev., 2008, 252: 1007—1026
[98] Chen B L, Yang Y, Zapata F, Qian G D, Luo Y S, Zhang J H, Lobkovsky E B. Inorg. Chem., 2006, 45: 8882—8886
[99] Haquin V, Gumy F, Daiguebonne C, Bünzli J C, Guillou O. Eur. J. Inorg. Chem., 2009, 4491—4497
[100] Veith M, Belot C, Huch V, Cui H L, Guyard L, Knorr M, Wickleder C. Eur. J. Inorg. Chem., 2010, 879—889
[101] Allendorf M D, Bauer C A, Bhakta R K, Houk R J T. Chem. Soc. Rev., 2009, 38: 1330—1352
[102] Doty F P, Bauer C A, Skulan A J, Grant P G, Allendorf M D. Adv. Mater., 2009, 21: 95—101
[103] White K A, Chengelis D A, Gogick K A, Stehman J, Rosi N L, Petoud S P. J. Am. Chem. Soc., 2009, 131: 18069—18071
[104] Shavaleev N M, Gumy F D R, Scopelliti R, Bünzli J C G. Inorg. Chem., 2009, 48: 5611—5613
[105] Yang P, Quan Z, Hou Z, Li C, Kang X, Cheng Z, Lin J. Biomaterials, 2009, 30: 4786—47959, 4491—4497

[100] Veith M, Belot C, Huch V, Cui H L, Guyard L, Knorr M, Wickleder C. Eur. J. Inorg. Chem., 2010, 879—889

[101] Allendorf M D, Bauer C A, Bhakta R K, Houk R J T. Chem. Soc. Rev., 2009, 38: 1330—1352

[102] Doty F P, Bauer C A, Skulan A J, Grant P G, Allendorf M D. Adv. Mater., 2009, 21: 95—101

[103] White K A, Chengelis D A, Gogick K A, Stehman J, Rosi N L, Petoud S P. J. Am. Chem. Soc., 2009, 131: 18069—18071

[104] Shavaleev N M, Gumy F D R, Scopelliti R, Bünzli J C G. Inorg. Chem., 2009, 48: 5611—5613

[105] Yang P, Quan Z, Hou Z, Li C, Kang X, Cheng Z, Lin J. Biomaterials, 2009, 30: 4786—4795

 

[1] Zhendong Liu, Jiajie Pan, Quanbing Liu. Application of Machine Learning in the Design of Cathode Materials and Electrolytes for High-Performance Lithium Batteries [J]. Progress in Chemistry, 2023, 35(4): 577-592.
[2] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[3] Niu Wenhui, Zhang Da, Zhao Zhengang, Yang Bin, Liang Feng. Development of Na-Based Seawater Batteries: “Key Components and Challenges” [J]. Progress in Chemistry, 2023, 35(3): 407-420.
[4] Anchen Fu, Yanjia Mao, Hongbo Wang, Zhijuan Cao. Development and Application of Dioxetane-based Chemiluminescent Probes [J]. Progress in Chemistry, 2023, 35(2): 189-205.
[5] Lan Yu, Peiran Xue, Huanhuan Li, Ye Tao, Runfeng Chen, Wei Huang. Circularly Polarized Thermally Activated Delayed Fluorescence Materials and Their Applications in Organic Light-Emitting Devices [J]. Progress in Chemistry, 2022, 34(9): 1996-2011.
[6] Chuanjun Yuan, Meng Wang, Ming Li, Jinpeng Bao, Pengrui Sun, Rongxuan Gao. Application of Luminescent Materials Based on Carbon Dots in Development of Latent Fingerprints [J]. Progress in Chemistry, 2022, 34(9): 2108-2120.
[7] Shuhui Li, Qianqian Li, Zhen Li. From Single Molecule to Molecular Aggregation Science [J]. Progress in Chemistry, 2022, 34(7): 1554-1575.
[8] Dongxue Han, Xue Jin, Wangen Miao, Tifeng Jiao, Pengfei Duan. Responsiveness of Excited State Chirality Based on Supramolecular Assembly [J]. Progress in Chemistry, 2022, 34(6): 1252-1262.
[9] Yu Lin, Xuecai Tan, Yeyu Wu, Fucun Wei, Jiawen Wu, Panpan Ou. Two-Dimensional Nanomaterial g-C3N4 in Application of Electrochemiluminescence [J]. Progress in Chemistry, 2022, 34(4): 898-908.
[10] Bin Li, Ying Yu, Guoxiang Xing, Jinfeng Xing, Wanxing Liu, Tianyong Zhang. Progress in Circularly Polarized Light Emission of Chiral Inorganic Nanomaterials [J]. Progress in Chemistry, 2022, 34(11): 2340-2350.
[11] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[12] Xiaolu Liu, Yuxiao Geng, Ran Hao, Yuping Liu, Zhongyong Yuan, Wei Li. Electrocatalytic Nitrogen Reduction Reaction under Ambient Condition: Current Status, Challenges, and Perspectives [J]. Progress in Chemistry, 2021, 33(7): 1074-1091.
[13] Xingchen Wu, Wenhui Liang, Chenxin Cai. Photoluminescence Mechanisms of Carbon Quantum Dots [J]. Progress in Chemistry, 2021, 33(7): 1059-1073.
[14] Xiaodong Jing, Ying Sun, Bing Yu, Youqing Shen, Hao Hu, Hailin Cong. Rational Design of Tumor Microenvironment Responsive Drug Delivery Systems [J]. Progress in Chemistry, 2021, 33(6): 926-941.
[15] Yafang Sun, Ziping Zhou, Tong Shu, Lisheng Qian, Lei Su, Xueji Zhang. Multicolor Luminescent Gold Nanoclusters: From Structure to Biosensing and Bioimaging [J]. Progress in Chemistry, 2021, 33(2): 179-187.