中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (01): 136-152 Previous Articles   Next Articles

• Review •

Development of Devices and Materials for Small Molecular Organic Light-emitting Diodes and Hurdles for Applications

Mi Baoxiu1,2, Wang Haishan1, Gao Zhiqiang1, Wang Xupeng1, Chen Runfeng2, Huang Wei2   

  1. 1. Jiangsu Engineering Center for Plate Displays & Solid State Lighting, School of Materials Science & Engineering, Nanjing University of Posts & Telecommunications, Nanjing 210046, China;
    2. Jiangsu Key Laboratory for Organic Electronics & Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210046, China
  • Received: Revised: Online: Published:
PDF ( 1719 ) Cited
Export

EndNote

Ris

BibTeX

Organic light-emitting diodes (OLEDs) are electrical driven devices which contain organic materials as emitting media. OLEDs have attracted attention widely in modern science and technology, due to their good features of high brightness, quick response, large viewing angle, simple manufacture process, and flexibility, etc. Currently, OLEDs have stridden forward to commercialization in its application field, such as flat panel display (FPD) and solid state lighting (SSL). Although small-size FPD products based on OLED have been in the markets, and prototype products in large dimensions also have come to true, there still exist challenges and hurdles. In this paper, we review the progress in OLED research of devices and materials, as well as OLED applications. Firstly, devices with different structures, such as host emitter based- and dopant emitter based devices, single-, double-, triple- and multilayer devices, as well as white OLED device are discussed, focusing on their working principles, corresponding device features and mechanism differences among them. Secondly, after introducing the strategies for OLED material research, different types of materials including hole transport materials, electron transport materials, various color emitters, and surface modification materials, are summarized, with their performance in OLED presented. Finally, the current challenges for applications are highlighted, and the focus of future research and development are proposed.

CLC Number: 

[1] Pope M, Kallmann H P, Magnante P. J. Chem. Phys., 1963, 38: art. no. 2042
[2] Visco R E, Chandross E A. J. Am. Chem. Soc., 1964, 86: 5350—5351
[3] Williams D F, Schadt M. Proc. IEEE, 1970, 476
[4] Vincett P S, Barlow W A, Hann R A, Roberts G G. Thin Solid Films, 1982, 94: 171—183
[5] Tang C W, VanSlyke S A. Appl. Phys. Lett., 1987, 51: 913—915
[6] Tang C W, VanSlyke S A, Chen C H. J. Appl. Phys., 1989, 65: 3610—3612
[7] Burroughes J H, Bradley D D C, Brown A R, Marks R N, Mackay K, Friend R H, Burns P L, Holmes A B. Nature, 1990, 347: 539—541
[8] Baldo M A, OBrien D F, You Y, Shoustikov A, Sibley S, Thompson M E, Forrest S R. Nature, 1998, 395: 151—154
[9] Khan R U A, Günter C H P. J. Mater. Sci. Mater. Electron., 2006, 17: 467—474
[10] Loo Y L, McCulloch I. MRS Bulletin, 2008, 33: 653—662
[11] Sun Y, Giebink N C, Kanno H, Ma B, Thompson M E, Forrest S R. Nature, 2006, 440: 908—912
[12] Shi J, Tang C W. Appl. Phys. Lett., 1997, 70: 1665—1667
[13] Mi B X, Gao Z Q, Lee C S, Kwong H L, Wong N B. Appl. Phys. Lett., 1999, 75: 4055—4057
[14] Burin A L, Ratner M A. J. Phys. Chem. A, 2000, 104: 4704—4710
[15] Naka S, Shinno K, Okada H, Onnagawa H, Miyashita K. Jpn. J. Appl. Phys., 1994, 33: L1772—L1774
[16] Yang H W, Yoon Y B, Kim T W, Kwack K D, Kim J H, Seo J H, Kim Y K. Solid State Commun., 2005, 137: 87—90
[17] Gao Z Q, Lee C S, Bello I, Lee S T, Wu S K, Yan Z L, Zhang X H. Synth. Met., 1999, 105: 141—144
[18] Kido J, Kimura M, Nagai K. Science, 1995, 267: 1332—1334
[19] Hung L S, Tang C W, Mason M G. Appl. Phys. Lett., 1997, 70: 152—154
[20] de Kok M M, Buechel M, Vulto S I E, van de Weijer P, Meulenkamp E A, de Winter S H P M, Mank A J G, Vorstenbosch H J M, Weijtens C H L, van Elsbergen V. Phys. Status Solidi, 2004, 201: 1342—1359
[21] Shirota Y, Kageyama H. Chem. Rev., 2007, 107: 953—1010
[22] Huang J, Pfeiffer M, Werner A, Blochwitz Jan, Leo K, Liu S. Appl. Phys. Lett., 2002, 80: 139—141
[23] Chang C C, Hsieh M T, Chen J F, Hwang S W, Chen C H. Appl. Phys. Lett., 2006, 89: art. no. 253504
[24] Mi B X, Gao Z Q, Cheah K W, Chen C H. Appl. Phys. Lett., 2009, 94: art. no. 073507
[25] DAndrade B W, Holmes R J, Forrest S R. Adv. Mater., 2004, 16: 624—628
[26] Niu Y H, Liu M S, Ka J W, Bardeker J, Zin M T, Schofield R, Chi Y, Jen A K Y. Adv. Mater., 2007, 19: 300—304
[27] Luo J, Li X, Hou Q, Peng J B, Yang W, Cao Y. Adv. Mater., 2007, 19: 1113—1117
[28] Liu J, Shao S Y, Chen L, Xie Z Y, Cheng Y X, Geng Y H, Wang L X, Jing X B, Wang F S. Adv. Mater., 2007, 19: 1859—1863
[29] Wang L, Lin M F, Wong W K, Cheah K W, Tam H L, Gao Z Q, Chen C H. Appl. Phys. Lett., 2007, 91: art. no. 183504
[30] DAndrade B W, Brooks J, Adamovich V, Thompson M E, Forrest S R. Adv. Mater., 2002, 14: 1032—1036
[31] Singh S P, Mohapatra Y N, Qureshi M, Manoharanet S S. Appl. Phys. Lett., 2005, 86: art. no. 113505
[32] Williams E L, Haavisto K, Li J, Jabbour G E. Adv. Mater., 2007, 19: 197—202
[33] Kim Y M, Park Y W, Choi J H, Ju B K, Jung J H, Kim J K. Appl. Phys. Lett., 2007, 90: art. no. 033506
[34] Tong Q X, Lai S L, Chen M Y, Tang J X, Kwong H L, Lee C S, Lee S T. Appl. Phys. Lett., 2007, 91: art. no. 023503
[35] Lei G, Wang L, Qiu Y. Appl. Phys. Lett., 2006, 88: art. no. 103508
[36] Kanno H, Holmes R J, Sun Y, Kena-Cohen S, Forrest S R. Adv. Mater., 2006, 18: 339—342
[37] Krummacher B C, Choong V E, Mathai M K, Choulis S A, So F, Jermann F, Fiedler T, Zachau M. Appl. Phys. Lett., 2006, 88: art. no. 113506
[38] Schwartz G, Pfeiffer M, Reineke S, Walzer K, Leo K. Adv. Mater., 2007, 19: 3672—3676
[39] Reineke S, Lindner F, Schwartz G, Seidler N, Walzer K, Lüssem B, Leo K. Nature, 2009, 459: 234—238
[40] Chew S, Lee C S, Lee S T, Wang P, He J, Li W, Pan J, Zhang X, Kwong H. Appl. Phys. Lett., 2006, 88: art. no. 093510
[41] Wong W Y, Ho C L, Gao Z Q, Mi B X, Chen C H, Cheah K W, Lin Z. Angew. Chem. Int. Ed., 2006, 45: 7800—7803
[42] Gambino S, Stevenson S G, Knights K A, Burn P L, Samuel I D W. Adv. Funct. Mater., 2008, 19: 317—323
[43] Ho C L, Wang Q, Lam C S, Wong W Y, Ma D, Wang L, Gao Z Q, Chen C H, Cheah K W, Lin Z. Chem. Asian J., 2008, 4: 89—103
[44] Lu W, Mi B X, Chan M C W, Hui Z, Che C M, Zhu N, Lee S T. J. Am. Chem. Soc., 2004, 126: 4958—4971
[45] Ikai M, Ishikawa F, Aratani N, Osuka A, Kawabata S, Kajioka T, Takeuchi H, Fujikawa H, Taga Y. Adv. Funct. Mater., 2006, 16: 515—519
[46] Yang C J, Yi C, Xu M, Wang J H, Liu Y Z, Gao X C, Fu J W. Appl. Phys. Lett., 2006, 89: art. no. 233506
[47] He Z, Wong, W Y, Yu X, Kwok H S, Lin Z. Inorg. Chem., 2006, 45: 10922—10937
[48] Yang C L, Zhang X W, You H, Zhu L Y, Chen L Q, Zhu L N, Tao Y T, Ma D G, Shuai Z G, Qin J G. Adv. Funct. Mater., 2007, 17: 651—661
[49] Adamovich V, Brooks J, Tamayo A, Alexander A M, Djurovich P I, D'Andrade B W, Adachi C, Forrest S R, Thompson M E. New J. Chem., 2002, 26: 1171—1178
[50] Mi B X, Wang P F, Liu M W, Kwong H L, Wong N B, Lee C S, Lee S T. Chem. Mater., 2003, 15: 3148—3151
[51] Murata H, Malliarasb G G, Uchida M, Shen Y, Kafafi Z H. Chem. Phys. Lett., 2001, 339: 161—166
[52] Liu T H, Iou C Y, Chen C H. Appl. Phys. Lett., 2003, 83: 5241—5243
[53] Okumoto K, Kanno H, Hamada Y, Takahashi H, Shibata K. Appl. Phys. Lett., 2006, 89: art. no. 013502
[54] Picciolo L C, Murata H, Kafafi Z H. Appl. Phys. Lett., 2001, 78: 2378—2380
[55] Mi B X, Gao Z Q, Liu M W, Chan K Y, Kwong H L, N. Wong B, Lee C S, Hung L S, Lee S T. J. Mater. Chem., 2002, 12: 1307—1310
[56] Adachi C, Baldo M A, Forrest S R, Lamansky S, Thompson M E, Kwong R C. Appl. Phys. Lett., 2001, 78: 1622—1624
[57] Tsuboyama A, Iwawaki H, Furugori M, Mukaide T, Kamatani J, Igawa S, Moriyama T, Miura S, Takiguchi T, Okada S, Hoshino M, Ueno K. J. Am. Chem. Soc., 2003, 125: 12971—12979
[58] Huang J, Watanabe T, Ueno K, Yang Y. Adv. Mater., 2007, 19: 739—743
[59] Meerheim R, Walzer K, Pfeiffer M, Leo K. Appl. Phys. Lett., 2006, 89: art. no. 061111
[60] Mi B X, Wang P F, Gao Z Q, Lee C S, Lee S T, Hong H L, Chen X M, Wong M S, Xia P F, Cheah K W, Chen C H, Huang W. Adv. Mater., 2008, 21: 339—343
[61] Tang C, Liu F, Xia Y J, Lin J, Xie L H, Zhong G Y, Fan Q L, Huang W. Org. Electron., 2006, 7: 155—162
[62] Gao Z Q, Li Z H, Xia P F, Wong M S, Cheah K W, Chen C H. Adv. Funct. Mater., 2007, 17: 3194—3199
[63] Lai W Y, Zhu R, Fan Q L, Hou L T, Cao Y, Huang W. Macromolecules, 2006, 39: 3707—3709
[64] Adachi C, Kwong R C, Djurovich P, Adamovich V, Baldo M A, Thompson M E, Forrest S R. Appl. Phys. Lett., 2001, 79: 2082—2084
[65] Lin J J, Liao W S, Huang H J, Wu F I, Cheng C H. Adv. Funct. Mater., 2008, 18: 485—491
[66] Yang C H, Cheng Y M, Chi Y, Hsu C J, Fang F C, Wong K T, Chou P T, Chang C H, Tsai M H, Wu C C. Angew. Chem. Int. Ed., 2007, 46: 2418—2421
[67] Yeh S J, Wu M F, Chen C T, Song Y H, Chi Y, Ho M H, Hsu S F, Chen C H. Adv. Mater., 2005, 17: 285—289
[68] Lee S J, Park K M, Yang K, KangY. Inorg. Chem., 2009, 48: 1030—1037
[69] Yook K, Jeon S, Joo C, LeeJ Y. Org. Electron., 2009, 10: 170—173
[70] Chen C H, Tang C W. Appl. Phys. Lett., 2001, 79: 3711—3713
[71] Okumoto K, Kanno H, Hamaa Y, Takahashi H, Shibata K. Appl. Phys. Lett., 2006, 89: art. no. 063504
[72] Ikai M, Tokito S, Sakamoto Y, Suzuki T, Taga Y. Appl. Phys. Lett., 2001, 79: 156—158
[73] Watanabe S, Ide N, Kido J. Jpn. J. Appl. Phys., 2007, 46: art. no. 1186
[74] Tao Y, Wang Q, Yang C, Wang Q, Zhang Z, Zou T, Qin J, Ma D. Angew. Chem. Int. Ed., 2008, 47: 8104—8107
[75] Adachi C, Baldo M A, Thompson M E, Forrest S R. J. Appl. Phys., 2001, 90: art. no. 5048
[76] Gao Z Q, Mi B X, Tam H L, Cheah K W, Chen C H, Wong M S, Lee S T, Lee C S. Adv. Mater., 2008, 20: 774—778
[77] Kawamura Y, Goushi K, Brooks J, Brown J J, Sasabe H, Adachiet C. Appl. Phys. Lett., 2005, 86: art. no. 071104
[78] Wu M F, Yeh S J, Chen C T, Murayama H, Tsuboi T, Li W S, Chao I, Liu S W, Wanget J K. Adv. Funct. Mater., 2007, 17: 1887—1895
[79] Inomata H, Goushi K, Masuko T, Konno T, Imai T, Sasabe H, Brown J J, Adachi C. Chem. Mater., 2004, 16: 1285—1291
[80] Ren X, Jian L, Holmes R J, Djurovich P I, Forrest S R, Thompson M E. Chem. Mater., 2004, 16: 4743—4747
[81] Park T J, Jeon W S, Park J J, Kim S Y, Lee Y K, Jang J, Kwon J H,Pode R. Appl. Phys. Lett., 2008, 92: art. no. 113308
[82] Tsuzuki T, Tokito S. Adv. Mater., 2007, 19: 276—280
[83] Gao Z Q, Luo M, Sun X H, Tam H L, Wong M S, Mi B X, Xia P F, Cheah K W, Chen C H. Adv. Mater., 2008, 21: 688—692
[84] Jeon S O, Yook K S, Joo C W, Lee J Y. Adv. Mater., 2010, 22: 1872—1876
[85] Ma H, Yip H L, Huang F, Jen A K Y. Adv. Funct. Mater., 2001, 20: 1371—1388
[86] 密保秀(Mi B X),陆希郎(Lu X L),高志强(Gao Z Q), 谢国伟(Cheah K W). 南京邮电大学报(Nanjing University of Posts & Telecommunications Report), 2008, 28(1): 48—52
[87] Hung L S, Zheng L R, Mason M G. Appl. Phys. Lett., 2001, 78: 673—676
[88] Van Slyke S A, Chen C H, Tang C W. Appl. Phys. Lett., 1996, 69: 2160—2162
[89] 陈金鑫(Chen C H), 黄孝文(Huang X W). OLED有机电致发光材料与器件(Organic Electrolumi-nescent Materials & Devices). 北京: 清华大学出版社(Beijing: Tsinghua University Press), 2007. 48—49
[90] Kwong R C, Nugent M R, Michalski L,Ngo T, Rajan K, Tung Y J, Weaver M S, Zhou T X, Hack M, Thompson M E, Forrest S R, Brownet J J. Appl. Phys. Lett., 2002, 81: 162—164
[91] Kwong R C, Weaver M S, Michael L M H, Tung Y J, Chwang A B, Zhou T X, Hack M, Brown J J. Org. Electron., 2003, 4: 155—164
[92] Su S J, Gonmori E, Sasabe H, Kido J. Adv. Mater., 2008, 20: 4189—4194

[1] Yun Lu, Jingpeng Li, Yan Zhang, Guorui Zhong, Bo Liu, Huiqing Wang. Wood-Derived Carbon Functional Materials [J]. Progress in Chemistry, 2020, 32(7): 906-916.
[2] Zixuan Wang, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Design, Self-Assembly and Application of DNA-Peptide Hybrid Molecules [J]. Progress in Chemistry, 2020, 32(6): 687-697.
[3] Lei Bai, Yanfeng Wang, Shuhui Huo, Xiaoquan Lu. Application of Food and Water Samples Pretreatment Using Functional Metal-Organic Frameworks Materials [J]. Progress in Chemistry, 2019, 31(1): 191-200.
[4] Xia Mengchan, Yang Yingwei. Organic Functional Materials Based on Pillarenes [J]. Progress in Chemistry, 2015, 27(6): 655-665.
[5] Zhang Xiaomin, Zhang Li, He Xueying, Wu Juntao. Fabrication and Application of New Polymer-Based Materials by Freeze-Drying [J]. Progress in Chemistry, 2014, 26(11): 1832-1839.
[6] Li Ang, Zhang Chunling, Sun Guoen, Mu Jianxin. Synthesis and Application of POMSS [J]. Progress in Chemistry, 2012, 24(07): 1309-1323.
[7] Gao Yurong, Ma Tingli. Bulk Heterojunction Polymer Solar Cells [J]. Progress in Chemistry, 2011, 23(5): 991-1013.
[8] Ma Guilin, Xu Jia, Zhang Ming, Wang Xiaowen, Yin Jinling, Xu Jianhong. The Developments of Inorganic Proton Conductors [J]. Progress in Chemistry, 2011, 23(0203): 441-448.
[9] Liu Zheng, Sun Lining, Shi Liyi, Zhang Dengsong. Near-Infrared Lanthanide Luminescence for Functional Materials [J]. Progress in Chemistry, 2011, 23(01): 153-164.
[10] . Molecularly Imprinted Functional Materials Based on Polysaccharides [J]. Progress in Chemistry, 2010, 22(11): 2165-2172.
[11] Zhu Dunru Qi Li Cheng Huimin Shen Xuan Lu Wei. Fe(II) Spin Crossover Molecule-Based Materials [J]. Progress in Chemistry, 2009, 21(6): 1187-1198.
[12] Zeng Renquan Fu Xiangkai. Ion-Exchange Properties of Zirconium Phosphate and Its Derivatives [J]. Progress in Chemistry, 2009, 21(12): 2536-2541.
[13] Wu Liguang1,3* Zhou Yong2,3 Zhang Lin2 Chen Huanlin2 Gao Congjie2,3. Advance in Functional Materials of Reverse Osmosis Composite Membranes [J]. Progress in Chemistry, 2008, 20(0708): 1216-1221.
[14]

Wang Lei|Lei Gangtie** Yi Xiaohua

. White Organic Light Emitting Diodes Based on Combination of Fluorescence and phosphorescence [J]. Progress in Chemistry, 2008, 20(0708): 1050-1056.
[15] Wang Hongyu1,Feng Jiachun1|Huang Wei1**|Wei Wei2 **. Organic Functional Materials Based on Cross-shaped Conjunction Structures [J]. Progress in Chemistry, 2007, 19(0203): 276-282.