中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (01): 107-124 Previous Articles   Next Articles

• Review •

AFM Study of Calcite Growth and Dissolution on the (104) Face

Wu Congmeng, Wang Xiaoqiang, Zhao Kang, Cao Meiwen, Xu Hai, Lü Jianren   

  1. Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao Economic & Technical Development Zone, Qingdao 266555, China
  • Received: Revised: Online: Published:
PDF ( 1712 ) Cited
Export

EndNote

Ris

BibTeX

Living organisms have evolved ability to produce biominerals or composites with exquisite structures and unique functionalities. Such a process is usually termed as biomineralization. Due to its high relevance to the fabrication of advanced materials, biomineralization has attracted tremendous interest in the past years. A comprehensive understanding of the biomineralization process and the underlying mechanism enables the biomimetic synthesis of functional materials with finely mediated structures. AFM is a powerful tool for in situ following the formation of biominerals at the micrometer and nanometer scale, particularly observing the crystal nucleation and growth. This paper reviews the recent advances in the AFM studies of calcite, focusing on the effects of organic additives on the growth and dissolution of the calcite (104) face. These organic additives include ethanol, carboxylic acids, amino acids, peptides, proteins and saccharides. Several proposed mechanistic interactions between organic additives and the (104) face are discussed. The documented investigations have indicated that step edge free energy, free energy barriers, and the number of active sites on surface can be tuned via site-specific interactions between organic additives and the crystal surface, thereby leading to the alteration of the step kinetics and the modification of the crystal morphology eventually. In the end, directions for future research in this regard are also discussed.

CLC Number: 

[1] Estroff L A. Chem. Rev., 2008, 108: 4329—4331
[2] Sommerdijk N A J M, With G D. Chem. Rev., 2008, 108: 4499—4550
[3] Berman A, Hanson J, Leiserowitz L, Koetzle T F, Weiner S, Addadi L. Science, 1993, 259: 776—779
[4] Gilbert P U P A, Abrecht M, Frazer B H. Rev. Mineral. Geochem., 2005, 59: 157—185
[5] Boskey A L. Elements, 2007, 3: 385—391
[6] Lakes R. Nature, 1993, 361: 511—515
[7] Porter S M. Science, 2007, 316: 1302—1302
[8] Wasylenki L E, Dove P M, de Yoreo J J. Geochim. Cosmochim. Acta, 2005, 69: 4227—4236
[9] Wasylenki L E, Dove P M, Wilson D S, de Yoreo J J. Geochim. Cosmochim. Acta, 2005, 69: 3017—3027
[10] Mann S, Archibald D D, Didymus J M, Douglas T, Heywood B R, Meldrum F C, Reeves N J. Science, 1993, 261: 1286—1292
[11] Walsh D, Hopwood J D, Mann S. Science, 1994, 264: 1576—1578
[12] Walsh D, Mann S. Nature, 1995, 377: 320—323
[13] Wesson J A, Ward M D. Elements, 2007, 3: 415—421
[14] Liu J, Jiang H, Liu X. J. Phys. Chem. B, 2006, 110: 9085—9089
[15] Van Cappellen P. Rev. Mineral. Geochem., 2003, 54: 357—381
[16] De Yoreo J J. Science & Technology Review, 2006, 4—10
[17] Aizenberg J, Muller D A, Grazul J L, Hamann D R. Science, 2003, 299: 1205—1208
[18] Yu S H, Colfen H. J. Mater. Chem., 2004, 14: 2124—2147
[19] Guo X H, Yu S H, Cai G B. Angew. Chem. Int. Ed., 2006, 45: 3977—3981
[20] Aizenberg J, Black A J, Whitesides G M. Nature, 1999, 398: 495—498
[21] Colfen H. Curr. Opin. Colloid Interface Sci., 2003, 8: 23—31
[22] 赵珊茸(Zhao S R), 王继扬(Wang J Y), 孙大亮(Sun D L), 许效红(Xu X H). 硅酸盐通报(Bulletin of the Chinese Ceramic Society), 2001, 20(2): 40—44
[23] Hillner P E, Gratz A J, Manne S, Hansma P K. Geology, 1992, 20: 359—362
[24] Ward M D. Science, 2005, 308: 1566—1567
[25] Qiu S R, Orme C A. Chem. Rev., 2008, 108: 4784—4822
[26] De Yoreo J J, Land T. Science & Technology Review, 1996, 13—21
[27] Teng H H. Spectroscopy, 2005, 20: 16—20
[28] Wierzbicki A, Sikes C S, Madura J D, Drake B. Calcif. Tissue. Int., 1994, 54: 133—141
[29] Dobson P S, Bindley L A, Macpherson J V, Unwin P R. Langmuir, 2005, 21: 1255—1260
[30] Henriksen K, Stipp S L S, Young J R, Marsh M E. Am. Mineral., 2004, 89: 1709—1716
[31] Britt D W, Hlady V. Langmuir, 1997, 13: 1873—1876
[32] Jiang W, Pan H, Cai Y, Tao J, Liu P, Xu X, Tang R. Langmuir, 2008, 24: 12446—12451
[33] Zhang J, Kirkham J, Wallwork M L, Smith D A, Brookes S J, Shore R C, Wood S R, Robinson C. Langmuir, 1999, 15: 8178—8183
[34] Leonelli C, Lusvardi G, Menabue L, Tonelli M. J. Am. Ceram. Soc., 2002, 85: 487—489
[35] Kwon K Y, Wang E, Chung A, Chang N, Lee S W. J. Phys. Chem. C, 2009, 113: 3369—3372
[36] Qiu S R, Wierzbicki A, Salter E A, Zepeda S, Orme C A, Hoyer J R, Nancollas G H, Cody A M, de Yoreo J J. J. Am. Chem. Soc., 2005, 127: 9036—9044
[37] Qiu S R, Wierzbicki A, Orme C A, Cody A M, Hoyer J R, Nancollas G H, Zepeda S, de Yoreo J J. Proc. Natl. Acad. Sci. USA, 2004, 101: 1811—1815
[38] Wang L, Qiu S R, Zachowicz W, Guan X, de Yoreo J J, Nancollas G H, Hoyer J R. Langmuir, 2006, 22: 7279—7285
[39] De Yoreo J J, Qiu S R, Hoyer J R. Am. J. Physiol. Renal. Physiol., 2006, 291: F1123—F1132
[40] Sheng X, Ward M D, Wesson J A. J. Am. Chem. Soc., 2003, 125: 2854—2855
[41] Tang R, Darragh M, Orme C A, Guan X, Hoyer J R, Nancollas G H. Angew. Chem. Int. Ed., 2005, 44: 3698—3702
[42] Wang L J, Nancollas G H. Chem. Rev., 2008, 108: 4628—4669
[43] Thomas T N, Land T A, Martin T, Casey W H, de Yoreo J J. J. Cryst. Growth, 2004, 260: 566—579
[44] De Yoreo J J, Burnham A K, Whitman P K. Int. Mater. Rev., 2002, 47: 113—152
[45] Malkin A J, Kuznetsov Y G, Glantz W, McPherson A. J. Phys. Chem., 1996, 100: 11736—11743
[46] Malkin A J, Kuznetsov Y G, Land T A, de Yoreo J J, McPherson A. Nat. Struct. Biol., 1995, 2: 956—959
[47] Vekilov P G, Alexander J I D. Chem. Rev., 2000, 100: 2061—2090
[48] Land T A, de Yoreo J J, Lee J D. Surf. Sci., 1997, 384: 136—155
[49] Yip C M, Ward M D. Biophys. J., 1996, 71: 1071—1078
[50] Kuznetsov Y G, Malkin A J, Land T A, de Yoreo J J, Barba A P, Konnert J, McPherson A. Biophys. J., 1997, 72: 2357—2364
[51] Griffith E M, Paytan A, Caldeira K, Bullen T D, Thomas E. Science, 2008, 322: 1671—1674
[52] Stanley S M. Chem. Rev., 2008, 108: 4483-4498
[53] Dove P M, Hochella M F. Geochim. Cosmochim. Acta, 1993, 57: 705—714
[54] Gratz A J, Hillner P E, Hansma P K. Geochim. Cosmochim. Acta, 1993, 57: 491—495
[55] Paquette J, Reeder R J. Geochim. Cosmochim. Acta, 1995, 59: 735—749
[56] Reeder R J. Geochim. Cosmochim. Acta, 1996, 60: 1543—1552
[57] Staudt W J, Reeder R J, Schoonen M A A. Geochim. Cosmochim. Acta, 1994, 58: 2087—2098
[58] Teng H H, Dove P M, de Yoreo J J. Geochim. Cosmochim. Acta, 2000, 64: 2255—2266
[59] Wilson D S. Master Dissertation of Virginia Polytechnic Institute and State University, 2003
[60] Teng H H, Dove P M, de Yoreo J J. Geochim. Cosmochim. Acta, 1999, 63: 2507—2512
[61] Davis K J, Dove P M, de Yoreo J J. Science, 2000, 290: 1134—1137
[62] Teng H H, Dove P M, Orme C A, de Yoreo J J. Science, 1998, 282: 724—727
[63] McEvoy A L, Stevens F, Langford S C, Dickinson J T. Langmuir, 2006, 22: 6931—6938
[64] 崔福斋(Cui F Z), 冯庆玲(Feng Q L), 唐睿康(Tang R K), 张天蓝(Zhang T L), 欧阳健明(Ouyang J M), 王爱华(Wang A H), 王夔(Wang K). 生物矿化(Biomineralization). 北京: 清华大学出版社(Beijing: Tsinghua Universisty Press), 2007. 55—88
[65] De Yoreo J J, Wierzbickib A, Dove P M. CrystEngComm, 2007, 9: 1144—1152
[66] Brantley S L, Chen Y. Rev. Mineral. Geochem., 1995, 31: 119—172
[67] Nugent M A, Brantley S L, Pantano C G, Maurice P A. Nature, 1998, 395: 588—591
[68] Lasaga A C, Soler J M, Ganor J, Burch T E, Nagy K L. Geochim. Cosmochim. Acta, 1994, 58: 2361—2386
[69] Helgeson H C, Murphy W M, Aagaard P. Geochim. Cosmochim. Acta, 1984, 48: 2405—2432
[70] Teng H H. Geochim. Cosmochim. Acta, 2004, 68: 253—262
[71] Blum A E, Yund R A, Lasaga A C. Geochim. Cosmochim. Acta, 1990, 54: 283—297
[72] Davis K J, Dove P M, Wasylenki L E, de Yoreo J J. Am. Mineral., 2004, 89: 714—720
[73] Chen T, Neville A, Yuan M. J. Cryst. Growth, 2005, 275: e1341—e1347
[74] Magdans U, Gies H. Eur. J. Mineral., 2004, 16: 261—268
[75] Malkaj P, Dalas E. Crystal Growth & Design, 2004, 4: 721—723
[76] Thachepan S, Li M, Davis S A, Mann S. Chem. Mater., 2006, 18: 3557—3561
[77] Hou W T, Feng Q L. J. Cryst. Growth, 2005, 282: 214—219
[78] Hou W T, Feng Q L. J. Cryst. Growth, 2003, 258: 402—408
[79] Feng Q L, Pu G, Pei Y, Cui F Z, Li H D, Kim T N. J. Cryst. Growth, 2000, 216: 459—465
[80] Hou W T, Feng Q L. Crystal Growth & Design, 2006, 6: 1086—1090
[81] Jimenez L C, Rodriguez N A, Dominguez V J M, Garcia R J M. Geochim. Cosmochim. Acta, 2003, 67: 1667—1676
[82] Volkmer D, Fricke M, Huber T, Sewald N. Chem. Commun., 2004, 1872—1873
[83] Mann S, Didymus J M, Sanderson N P, Heywood B R. J. Chem. Soc. Faraday Trans., 1990, 1873—1880
[84] Manolia F, Kanakisa J, Malkajb P, Dalas E. J. Cryst. Growth, 2002, 236: 363—370
[85] Mann S. Nature, 1988, 332: 119—124
[86] Stipp S L, Hochella M F. Geochim. Cosmochim. Acta, 1991, 55: 1723—1736
[87] Stipp S L S, Gutmannsbauer W, Lehmann T. Am. Mineral., 1996, 81: 1—8
[88] Stipp S L S, Eggleston C M, Nielsen B S. Geochim. Cosmochim. Acta, 1994, 58: 3023—3033
[89] Hausner D B, Reeder R J, Strongin D R. J. Colloid. Interface Sci., 2007, 305: 101—110
[90] Sand K K, Stipp S L S, Hassenkam T, Yang M, Cooke D, Makovicky E. Mineral. Mag., 2008, 72: 353—357
[91] De Yoreo J J, Vekilov P G. Rev. Mineral. Geochem., 2003, 54: 57—93
[92] Teng H H, Chen Y, Pauli E. J. Am. Chem. Soc., 2006, 128: 14482—14484
[93] Hazen R M, Filley T R, Goodfriend G A. Proc. Natl. Acad. Sci. USA, 2001, 98: 5487—5490
[94] Freeman C L, Asteriadis I, Yang M, Harding J H. J. Phys. Chem. C, 2009, 113: 3666—3673
[95] Kim I W, Giocondi J L, Orme C A, Collino S, Spencer E J. Crystal Growth & Design, 2008, 8: 1154—1160
[96] Fu G, Valiyaveettil S, Wopenka B, Morse D E. Biomacromolecules, 2005, 6: 1289—1298
[97] Honess A P, Jones J R. Geol. Soc. Am. Bull., 1937, 48: 667—721
[98] Teng H H, Dove P M. Am. Mineral., 1997, 82: 878—887
[99] Addadi L, Weiner S. Proc. Natl. Acad. Sci. USA, 1985, 82: 4110—4114
[100] Julian R R, Myung S, Clemmer D E. J. Phys. Chem. B, 2005, 109: 440—444
[101] Orme C A, Noy A, Wierzbicki A, McBride M T, Grantham M, Teng H H, Dove P M, de Yoreo J J. Nature, 2001, 411: 775—779
[102] Piana S, Jones F, Gale J D. CrystEngComm, 2007, 9: 1187—1191
[103] Elhadj S, Salter E A, Wierzbicki A, de Yoreo J J, Han N, Dove P M. Crystal Growth & Design, 2006, 6: 197—201
[104] Elhadj S, de Yoreo J J, Hoyer J R, Dove P M. Proc. Natl. Acad. Sci. USA, 2006, 103: 19237—19242
[105] Kim I W, Darragh M R, Orme C A, Evans J S. Crystal Growth & Design, 2006, 6: 5—10
[106] Stephenson A E, de Yoreo J J, Wu L, Wu K J, Hoyer J, Dove P M. Science, 2008, 322: 724—727
[107] Delak K, Giocondi J, Orme C A, Evans J S. Crystal Growth & Design, 2008, 8: 4481—4486
[108] Falini G, Albeck S, Weiner S, Addadi L. Science, 1996, 271: 67—69
[109] Thompson J B, Paloczi G T, Kindt J H, Michenfelder M, Smith B L, Stucky G, Morse D E, Hansma P K. Biophys. J., 2000, 79: 3307—3312
[110] Fu G, Qiu S R, Orme C A, Morse D E, De Yoreo J J. Adv. Mater., 2005, 17: 2678—2683
[111] De Yoreo J J, Dove P M. Science, 2004, 306: 1301—1302
[112] Wang X, Sun H, Xia Y, Chen C, Xu H, Shan H, Lu J R. J. Colloid Interface Sci., 2009, 332: 96—103
[113] Pipich V, Balz M, Wolf S E, Tremel W, Schwahn D. J. Am. Chem. Soc., 2008, 130: 6879—6892
[114] Amos F F, Evans J S. Biochemistry, 2009, 48: 1332—1339
[115] Politi Y, Mahamid J, Goldberg H, Weiner S, Addadi L. CrystEngComm, 2007, 9: 1171—1177
[116] Tao J, Zhou D, Zhang Z, Xu X, Tang R. Proc. Natl. Acad. Sci. USA, 2009, 106: 22096—22101
[117] Walters D A, Smith B L, Belcher A M, Plaoczi G T, Stucky G D, Morse D E, Hansma P K. Biophys. J., 1997, 72: 1425—1433
[118] Belcher A M, Wu X H, Christensen R J, Hansma P K, Stucky G D, Morse D E. Nature, 1996, 381: 56—58
[119] Wang X, Wu C, Tao K, Zhao K, Wang J, Xu H, Xia D, Shan H, Lu J R. J. Phys. Chem. B, 2010, 114: 5301—5308
[120] Perry T D, Duckworth O W, McNamara C J, Martin S T, Mitchell R. Environ. Sci. Technol., 2004, 38: 3040—3046
[121] Perry T D, Duckworth O W, Kendall T A, Martin S T, Mitchell R. J. Am. Chem. Soc., 2005, 127: 5744—5745
[122] Lea A S, Amonette J E, Baer D R, Liang Y, Colton N G. Geochim. Cosmochim. Acta, 2001, 65: 369—379
[123] Braccini I, Grasso R P, Perez S. Carbohydr. Res., 1999, 317: 119—130
[124] Chenu C, Roberson E B. Soil Biol. Biochem., 1996, 28: 877—884
[125] Henriksen K, Young J R, Bown P R, Stipp S L S. Palaeontology, 2004, 47: 725—743
[126] Henriksen K, Stipp S L S. Crystal Growth & Design, 2009, 9: 2088—2097
[127] Yang M, Stipp S L S, Harding J H. Crystal Growth & Design, 2008, 8: 4066—4074
[128] Rode S, Oyabu N, Kobayashi K, Yamada H, Kuhnle A. Langmuir, 2009, 25: 2850—2853

[1] Yanhua Sang, Haihua Pan, Ruikang Tang. Condensed-Matter Chemistry in Biomineralization [J]. Progress in Chemistry, 2020, 32(8): 1100-1114.
[2] Yang Haocheng, Chen Yifu, Ye Chen, Wan Lingshu, Xu Zhikang. Advances in Porous Organic-Inorganic Composite Membranes [J]. Progress in Chemistry, 2015, 27(8): 1014-1024.
[3] Pan Yu, Li Na, Zhou Runhong, Zhao Min. Nano-Magnetosomes in Magnetotactic Bacteria [J]. Progress in Chemistry, 2013, 25(10): 1781-1794.
[4] Wang Ben, Tang Ruikang*. Biomineralization: One Promising Bridge between Inorganic Chemistry and Biomedicine [J]. Progress in Chemistry, 2013, 25(04): 633-641.
[5] Ouyang Jianming*, Zhang Guangna, Wang Fengxin, Li Junjun. Nucleation, Growth, and Aggregation of Nanocrystallites in Urine of Calcium Oxalate Stone Patients as well as Kidney Stone Formation [J]. Progress in Chemistry, 2013, 25(04): 642-649.
[6] Ma Mengjia, Chen Yuyun, Yan Zhiqiang, Ding Jian, He Dannong*, Zhong Jian*. Applications of Atomic Force Microscopy in Nanobiomaterials Research [J]. Progress in Chemistry, 2013, 25(01): 135-144.
[7] Zhao Qiaoling, Ma Zhi*. Application of Atomic Force Microscope to Polyolefin Research [J]. Progress in Chemistry, 2012, (10): 2011-2018.
[8] Liu Chuang, Wang Yuangui, Geng Jiaqing, Jiang Zhongyi, Yang Dong. Biosynthesis of Inorganic Nanoparticles [J]. Progress in Chemistry, 2011, 23(12): 2510-2521.
[9] Ouyang Jianming, Yang Rue, Tan Jin. Effect of Renal Epithelial Cell After Injury on Biomineralization of Calcium Oxalate [J]. Progress in Chemistry, 2010, 22(08): 1665-1671.
[10] Cai Guobin|Guo Xiaohui|Yu Shuhong**. Polymer Controlled Biomimetic Mineralization [J]. Progress in Chemistry, 2008, 20(0708): 1001-1014.
[11] Xu Xurong|Cai Anhua|Liu Rui|Pan Haihua|Tang Ruikang**. Amorphous Calcium Carbonate in Biomineralization [J]. Progress in Chemistry, 2008, 20(01): 54-59.
[12] Ou Yangjianming**. Research Progress in Lattice Matching and Electrostatic Compatibility in Growth of Biominerals Induced by Monolayers [J]. Progress in Chemistry, 2005, 17(05): 931-937.
[13] Ouyang Jianming**. Biominerals and Their Mineralization Process [J]. Progress in Chemistry, 2005, 17(04): 749-756.
[14] Ou Yangjianming**,Chen Dezhi. The Growth of Biomineral Crystals Modulated by Self-Assembled Monolayers [J]. Progress in Chemistry, 2005, 17(03): 563-572.
[15] Mao Chuanbin,Li Hengde,Cui Fuzhai,Feng Qingling,Wang Hao. Biomimetic Synthesis of Inorganic Materials [J]. Progress in Chemistry, 1998, 10(03): 246-.