中文
Announcement
More
Progress in Chemistry 2011, Vol. 23 Issue (01): 1-12   Next Articles

• Mini Accounts •

Hydrogen bonded arylamide foldamers: From conformational control to functional evolution

Li Zhan ting1,2   

  1. 1. Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China;
    2. Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
  • Online: Published:
PDF ( 1950 ) Cited
Export

EndNote

Ris

BibTeX

Hydrogen bonded aryl amide and hydrazide foldamers may adopt folded or helical, zigzag, straight or other extended conformations, depending on the positions of the amides and hydrogen bonding acceptors on the aromatic rings. Because of the relatively high strength of hydrogen bonding and the intrinsic planarity of the arylamide units, this family of amide oligomers usually possesses highly predictable conformations. The frameworks themselves can be conveniently constructed via simple amide coupling reactions, while discrete functional groups can be introduced to the frameworks or appended side chains at required positions. Thus, in the past few years, we have focused on their applications in designing new molecular tweezers, for generating welldefined and functional supramolecular systems, including organogels, vesicles and liquid crystals, and for directing the formation of complicated macrocyclic systems. More recently, we have found that hydrogen bonding-driven folded segments can also be incorporated into polymers to reversibly tune their mechanical property through the breaking and recovering of the intramolecular hydrogen bonds. This Mini Account summarizes our recent efforts along this line.


[1] Hecht S, Huc I (eds). Foldamers: Structure, Properties and Applications, Weinheim: Wiley-VCH, 2007


[2] Gong B. Chem. Eur. J., 2001, 7: 4337—4342


[3] Huc I. Eur. J. Org. Chem., 2004, 17—29


[4] Gong B. Acc. Chem. Res., 2008, 41: 1376—1386


[5] Saraogi I, Hamilton A D. Chem. Soc. Rev., 2009, 38: 1726—1743


[6] Li Z T, Hou J L, Li C, Yi H P. Chem. Asian J., 2006, 1: 766—778


[7] Li Z T, Hou J L, Li C. Acc. Chem. Res., 2008, 41: 1343—1353


[8] Zhao X, Li Z T. Chem. Commun., 2010, 46: 1601—1616


[9] Hu Z Q, Hu H Y, Chen C F. J. Org. Chem., 2006, 71: 1131—1138


[10] Yin H, Hamilton A D. Angew. Chem. Int. Ed., 2005, 44: 4130—4163


[11] Tew G N, Scott R W, Klein M L, DeGrado W F. Acc. Chem. Res., 2010, 43: 30—39


[12] Hou J L, Shao X B, Chen G J, Zhou Y X, Jiang X K, Li Z T. J. Am. Chem. Soc., 2004, 126: 12386—12394


[13] Howard H A K, Hoy V J, O’Hagan D, Smith G T. Tetrahedron, 1996, 52: 12613—12622


[14] Dunitz J D. ChemBioChem, 2004, 5: 614—621


[15] Li C, Ren S F, Hou J L, Yi H P, Zhu S Z, Jiang X K, Li Z T. Angew. Chem. Int. Ed., 2005, 44: 5725—5729


[16] Zhu Y Y, Wu J, Li C, Zhu J, Hou J L, Li C Z, Jiang X K,Li Z T. Cryst. Growth Des., 2007, 7: 1490—1496


[17] Zhu Y Y, Yi H P, Li C, Jiang X K, Li Z T. Cryst. Growth Des., 2008, 8: 1294—1300


[18] Gan Q, Li F, Li G, Kauffmann B, Xiang J, Huc I, Jiang H. Chem. Commun., 2010, 46: 297—299


[19] Zhu Y Y, Jiang L, Li Z T. CrystEngComm, 2009, 11: 235—238


[20] V?gtle F, Weber E. Angew. Chem. Int. Ed. Engl., 1979, 18: 753—776


[21] Hill D J, Mio M J, Prince R B, Hughes T S, Moore J S. Chem. Rev., 2001, 101: 3893—4011


[22] Hou J L, Shao X B, Chen G J, Zhou Y X, Jiang X K, Li Z T. J. Am. Chem. Soc., 2004, 126: 12386—12394


[23] Zhao X, Wang X Z, Jiang X K, Chen Y Q, Li Z T, Chen G J. J. Am. Chem. Soc., 2003, 125: 15128—15139


[24] Li C, Wang G T, Yi H P, Jiang X K, Li Z T, Wang R X. Org. Lett., 2007, 9: 1797—1800


[25] Yi H P, Shao X B, Hou J L, Li C, Jiang X K, Li Z T. New J. Chem., 2005, 29: 1213—1218


[26] Yamato K, Yuan L, Feng W, Helsel A J, Sanford A R, Zhu J, Deng J, Zeng X C, Gong B. Org. Biomol. Chem., 2009, 7: 3643—3647


[27] Yi H P, Li C, Hou J L, Jiang X K, Li Z T. Tetrahedron, 2005, 61: 7974—7980


[28] Du P, Xu Y X, Jiang X K, Li Z T. Sci. China Ser. B, 2009, 52: 489—496


[29] Wu Z Q, Shao X B, Li C, Hou J L, Wang K, Jiang X K, Li Z T. J. Am. Chem. Soc., 2005, 127: 17460—17468


[30] Liu H, Wu J, Jiang X K, Li Z T. Tetrahedron Lett., 2007, 48: 7327—7331


[31] Feng D J, Wang G T, Wu J, Wang R X, Li Z T. Tetrahedron Lett., 2007, 48: 6181—6185


[32] Wu Z Q, Li C Z, Feng D J, Jiang X K, Li Z T. Tetrahedron, 2006, 62: 11054—11062


[33] Li C Z, Zhu J, Wu Z Q, Hou J L, Li C, Shao X B, Jiang X K, Li Z T, Gao X, Wang Q R. Tetrahedron, 2006, 62: 6973—6980


[34] Li C Z, Li Z T, Gao X, Wang Q R. Chin. J. Chem., 2007, 25: 1417—1422


[35] Wu J, Hou J L, Li C, Wu Z Q, Jiang X K, Li Z T, Yu Y H. J. Org. Chem., 2007, 72: 2897—2905


[36] Hou J L, Yi H P, Shao X B, Li C, Wu Z Q, Jiang X K, Wu L Z, Tung C H, Li Z T. Angew. Chem. Int. Ed., 2006, 45: 796—800


[37] Yi H P, Wu J, Ding K L, Jiang X K, Li Z T. J. Org. Chem., 2007, 72: 870—877


[38] Xu Y X, Zhao X, Jiang X K, Li Z T. J. Org. Chem., 2009, 74: 7267—7273


[39] Xu Y X, Wang G T, Zhao X, Jiang X K, Li Z T.Langmuir, 2009, 25: 2684—2688

[40] Huc I, Maurizot V, Gornitzka H, Léger J M. Chem. Commun., 2002, 578—579


[41] Gan Q, Bao C, Kauffmann B, Grélard A, Xiang J, Liu S, Huc I, Jiang H. Angew. Chem. Int. Ed., 2008, 47: 1715— 1718.


[42] Zhu J, Wang X Z, Shao X B, Hou J L, Chen X Z, Jiang X K, Li Z T. J. Org. Chem., 2004, 69: 6221 —6227

[43] Zhu J, Lin J B, Xu Y X, Jiang X K, Li Z T. Tetrahedron, 2006, 62: 11933—11941


[44] Zhu J, Lin J B, Xu Y X, Shao X B, Jiang X K, Li Z T. J. Am. Chem. Soc., 2006, 128: 12307—12313


[45] Wolffs M, Delsuc N, Veldman D, Anh N V, Williams R M, Meskers S C J, Janssen P A J, Huc I, Schenning A P H J. J. Am. Chem. Soc., 2009, 131: 4819—4829


[46] Wang K, Wu Y S, Wang G T, Wang R X, Jiang X K, Fu H B, Li Z T. Tetrahedron, 2009, 65: 7718—7729


[47] Li C, Zhu Y Y, Yi H P, Li C Z, Jiang X K, Li Z T. Chem. Eur. J., 2007, 13: 9990—9998


[48] Wang L, Xiao Z Y, Hou J L, Wang G T, Jiang X K, Li Z T. Tetrahedron, 2009, 65: 10544—10551


[49] Cai W, Wang G T, Xu Y X, Jiang X K, Li Z T. J. Am. Chem. Soc., 2008, 130: 6936—6937


[50] You L Y, Jiang X K, Li Z T. Tetrahedron, 2009, 65: 9494—9504.


[51] Lu B Y, Lin J B, Jiang X K, Li Z T. Tetrahedron Lett., 2010, 51: 3830—3835


[52] You L Y, Li Z T. Chin. J. Chem., revised


[53] Kunieda H, Nakamura K, Evans D F. J. Am. Chem. Soc., 1991, 113: 1051—1052


[54] Xu X N, Wang L, Li Z T. Chem. Commun., 2009, 6634—6636


[55] Cai W, Wang G T, Du P, Wang R X, Jiang X K, Li Z T. J. Am. Chem. Soc., 2008, 130: 13450—13459


[56] Green M M, Cheon K S, Yang S Y, Park J W, Swansburg S, Liu W. Acc. Chem. Res., 2001, 34: 672—680


[57] Xiao Z Y, Hou J L, Jiang X K, Li Z T, Ma Z. Tetrahedron, 2009, 65: 10182—10191


[58] Chen Y Q, Wang X Z, Shao X B, Hou J L, Chen X Z, Jiang X K, Li Z T. Tetrahedron, 2004, 60: 10253—10260


[59] Wu Z Q, Jiang X K, Li Z T. Tetrahedron Lett., 2005, 46: 8067—8070


[60] Wu Z Q, Jiang X K, Zhu S Z, Li Z T. Org. Lett., 2004, 6: 229—232


[61] Yuan L H, Feng W, Yamato K, Sanford A R, Xu D G, Guo H, GongB. J. Am. Chem. Soc., 2004, 126: 11120— 11121


[62] Jiang H, Léger J M, Guionneau P, Huc I. Org. Lett., 2004, 6: 2985—2988

[63] Li F, Gan Q, Xue L, Wang Z M, Jiang H. Tetrahedron Lett., 2009, 50: 2367—2370


[64] Qin B, Chen X, Fang X, Shu Y, Yip Y K, Yan Y, Pan S, Ong W Q, Ren C, Su H, Zeng H. Org. Lett., 2008, 10: 5127—5130


[65] Yang L, Zhong L, Yamato K, Zhang X, Feng W, Deng P, Yuan L, Zeng X C, Gong B. New J. Chem., 2009, 33: 729—733


[66] Zhu Y Y, Li C, Li G Y, Jiang X K, Li Z T. J. Org. Chem., 2008, 73: 1745—1751


[67] Zhu Y Y, Wang G T, Li Z T. Org. Biomol. Chem., 2009, 7: 3243—3250


[68] Corbett P T, Leclaire J, Vial L, West K R, Wietor J L, Sanders J K M, Otto S. Chem. Rev., 2006, 106: 3652— 3711


[69] Lin J B, Xu X N, Jiang X K, Li Z T. J. Org. Chem., 2008, 73: 9403—9410


[70] Lin J B, Wu J, Jiang X K, Li Z T. Chin. J. Chem., 2009, 27: 117—122

[71] Xu X N, Wang L, Lin J B, Wang G T, Jiang X K, Li Z T. Chem. Eur. J., 2009, 15: 5763—5774


[72] Zhou C, Cai W, Wang G T, Zhao X, Li Z T. Macromol. Chem. Phys., accepted


[73] Yamazaki N, Matsumoto M, Higashi F. J. Polym. Sci. Polym. Chem., 1975, 13: 1373—1380


[74] Kushner A M, Gabuchian V, Johnson E G, Guan Z. J. Am. Chem. Soc., 2007, 129: 14110—14111


[75] Shi Z M, Huang J, Ma Z, Zhao X, Guan Z, Li Z T. Macromolecules, DOI: 10.1021/ma100952h.

[1] Yanhua Sang, Haihua Pan, Ruikang Tang. Condensed-Matter Chemistry in Biomineralization [J]. Progress in Chemistry, 2020, 32(8): 1100-1114.
[2] Qiao Jiang, Xuehui Xu, Baoquan Ding. Regulation of Condensed States of Biological Macromolecules by Rationally Designed Nanomaterials [J]. Progress in Chemistry, 2020, 32(8): 1128-1139.
[3] Jie Yu, Liu-Zhu Gong. Discovery and Typical Advances of Chiral Amino Amide Catalysts [J]. Progress in Chemistry, 2020, 32(11): 1729-1744.
[4] Dan-Wei Zhang, Hui Wang, Zhan-Ting Li. Macromolecular and Supramolecular Helical Tubes: Synthesis and Functions [J]. Progress in Chemistry, 2020, 32(11): 1665-1679.
[5] Qiang Pei, Aixiang Ding. The Design and Application of Quadruple Hydrogen Bonded Systems [J]. Progress in Chemistry, 2019, 31(2/3): 258-274.
[6] Yawen Li, Wantong Ao, Huilin Jin, Liping Cao. Aggregation-Induced Emission of Tetraphenylethene Derivatives with Macrocycles via Host-Guest Interactions [J]. Progress in Chemistry, 2019, 31(1): 121-134.
[7] Ying Xu, Tingting Gao, Qixiao Wang, Yang Qu, Hongfei Liu, Yuanrong Xin. Preparation Technologies of the Polymer-Based MONOLITH Material and Its Application as Stationary Phase of Affinity Chromatography for the Separation of Biological Macromolecules [J]. Progress in Chemistry, 2018, 30(8): 1112-1120.
[8] Fanfan Du, Ying Zheng, Guorong Shan, Yongzhong Bao, Suyun Jie*, Pengju Pan*. Hydrogen Bonding-Based Non-Metallic Organocatalysts for Ring-Opening Polymerization of Lactones [J]. Progress in Chemistry, 2018, 30(6): 710-718.
[9] Xiang Wang*. Macrocyclic and Supramolecular Chemistry: From Heteracalixaromatics to Coronarenes——In Memory of Professor Zhi-Tang Huang [J]. Progress in Chemistry, 2018, 30(5): 463-475.
[10] Xiangming Na, Weiqing Zhou, Juan Li, Zhiguo Su, Guanghui Ma. Preparation and Application of Porous Polymer Microspheres in Virus-Like Particles Purification [J]. Progress in Chemistry, 2018, 30(1): 5-13.
[11] Dong Yunhong, Cao Liping. Functionalization of Cucurbit uril [J]. Progress in Chemistry, 2016, 28(7): 1039-1053.
[12] Xia Mengchan, Yang Yingwei. Organic Functional Materials Based on Pillarenes [J]. Progress in Chemistry, 2015, 27(6): 655-665.
[13] Liang Jiamei, Feng Anchao, Yuan Jinying. Synthesis and Controllable Drug Release of Stimuli-Responsive Star Polymer [J]. Progress in Chemistry, 2015, 27(5): 522-531.
[14] Zhang Wen-Bin, Wang Xiao-Man, Wang Xiao-Wei, Liu Dong, Han Shuai-Yuan, Cheng Stephen Z. D.. Giant Molecules Based on Nano-Atoms [J]. Progress in Chemistry, 2015, 27(10): 1333-1342.
[15] Qian Xiaohong, Jin Can, Zhang Xiaoning, Jiang Yan, Lin Chen, Wang Leyong. Squaramide Derivatives and Their Applications in Ion Recognition [J]. Progress in Chemistry, 2014, 26(10): 1701-1711.