中文
Announcement
More
Progress in Chemistry 2010, Vol. 22 Issue (11): 2248-2253 Previous Articles   

• Review •

Recent Progress in Flexible Dye-Sensitized Solar Cells

Lan Zhang** Wu Jihuai   

  1. (Institute of Materials Physical Chemistry, Huaqiao University, Quanzhou 362021, China)
  • Received: Revised: Online: Published:
  • Contact: Lan Zhang E-mail:lanzhang@hqu.edu.cn
PDF ( 1225 ) Cited
Export

EndNote

Ris

BibTeX

Although the highest energy conversion efficiency about 11 % of dye-sensitized solar cell (DSSC) based on the transparent oxide conductive glass (TCO) has been obtained, the heavy, rigid, and expensive TCO substrate need to be substituted with flexible materials such as plastic or metal substrates in order to both decrease the production costs and enlarge the application range. The key problem with plastic substrates is their low temperature tolerance, so some novel fabricating methods need to be developed to enhance the quality of flexible photo electrodes. Whereas with metal substrates, the above problem is not existed due to the high temperature tolerance of them, while a few kinds of metals such as stainless steel, titanium are suitable for substrates owing to the corrosion of iodine-containing electrolyte typically used in DSSC. The key problem for fabricating flexible DSSC with metal substrate photo electrodes is to fabricate the high transparent counter electrodes and use some kinds of low light absorption electrolytes. Taking these accounts in mind, researchers have obtained some significant progresses. Another important research challenge on flexible DSSC is to improve the long-term stability of the cells to suit for consumer applications. Some kinds of quasi or all solid state electrolytes have been used in TCO based DSSC and show excellent long-term stability, if they can be transferred to the flexible DSSC successfully, the problem can be solved.

Contents
1 Introduction
2 Flexible photo electrode
3 Flexible counter electrode
4 Electrolyte
5 Conclusions and outlook

CLC Number: 

[1] O'Regan B, Grtzel M. Nature, 1991, 353: 737—740
[2] Grtzel M. Inorg. Chem., 2005, 44: 6841—6851
[3] Ito S, Murakami T, Liska P, Grtzel C, Nazeeruddin M K, Grtzel M. Thin Solid Films, 2008, 516: 4613—4619
[4] Nazeeruddin M K, Kay A, Rodicio I, Humphry B R, Muller E, Grtzel M. J. Am. Chem. Soc., 1993, 115: 6382—6390
[5] Toivola M, Halme J, Miettunen K, Aitola K, Lund P D. Int. J. Energy Res., 2009, 33: 1145—1160
[6] Zhang D, Yoshida T, Minoura H. Adv. Mater., 2003, 15: 814—817
[7] Pan H, Ko S H, Misra N, Grigoropoulos C P. Appl. Phys. Lett., 2009, 94: art. no. 0711171
[8] Uchida S, Tomiha M, Takizawa H, Kawaraya M. J. Photo chem. Photobiol. A: Chem., 2004, 164: 93—96
[9] Yamaguchi T, Tobe N, Matsumoto D, Arakawa H. Chem. Commun., 2007, 45: 4767—4769
[10] Zhang D, Yoshida T, Furuta K, Minoura H. J. Photochem. Photobiol. A: Chem., 2004, 164: 159—166
[11] DüRR M, Schmid A, Obermaier M, Rosselli S, Yasuda A, Nelles G. Nat. Mater., 2005, 4: 607—611
[12] Murakami T N, Kijitori Y, Kawashima N, Miyasaka T. Chem. Lett., 2003, 32: 1076—1077
[13] Zhang D, Yoshida T, Oekermann T, Furuta K, Minoura H. Adv. Funct. Mater., 2006, 16: 1228—1234
[14] Xiao Y, Wu J, Li Q, Xie G, Yue G, Ye H, Lan Z, Huang M, Lin J. Chinese Sci. Bull., 2010, 53: 1—6
[15] Kijitori Y, Ikegami M, Miyasaka T. Chem. Lett., 2007, 36: 190—191
[16] Miettunen K, Halme J, Toivola M, Lund P. J. Phys. Chem. C, 2008, 112: 4011—4017
[17] Ito S, Ha N L, Rothenberger G, Liska P, Zakeeruddin S M, Grtzel M. Chem. Commun., 2006, 38: 4004—4006
[18] Zhu K, Neale N R, Miedaner A, Frank A J. Nano Lett., 2007, 7: 69—74
[19] Fan X, Wang F, Chu Z, Chen L, Zhang C, Zou D. Appl. Phys. Lett., 2007, 90: art. no. 073501
[20] Liu Z, Subramania V, Misra M. J. Phys. Chem. C, 2009, 113: 14028—14033
[21] Weintraub B, Wei Y, Wang Z L. Angew. Chem. Int. Ed., 2009, 48: 1—6
[22] Fang X, Ma T, Guan G, Akiyama M. J. Electroanal. Chem., 2004, 570: 257—263
[23] Fang X, Ma T, Akiyama M, Guan G, Tsunematsu S, Abe E. Thin Solid Films, 2005, 472: 242—245
[24] Ikegami M, Miyoshi K, Miyasaka T. Appl. Phys. Lett., 2007, 90: art. no. 1531221
[25] Lindstrōm H, Holmberg A, Magnusson E, Malmqvist L, Hagfeldt A. J. Photochem. Photobiol. A: Chem., 2001, 145: 107—112
[26] Murakami T N, Grtzel M. Inorg. Chim. Acta, 2008, 361: 572—580
[27] Chen J, Li K, Luo Y, Guo X, Li D, Deng M, Huang S, Meng Q. Carbon, 2009, 47: 2704—2708
[28] Suzuki K, Yamamoto M, Kumagai M, Yanagida S. Chem. Lett., 2003, 32: 28—29
[29] Xu Y, Bai H, Lu G, Li C, Shi G. J. Am. Chem. Soc., 2008, 130: 5856—5857
[30] Li Q, Wu J, Tang Q, Lan Z, Li P, Lin J, Fan L. Electro. Chem. Commun., 2008, 10: 1299—1302
[31] Wu J, Li Q, Fan L, Lan Z, Li P, Lin J, Hao S. J. Power Sources, 2008, 181: 172—176
[32] Bay L, West K, Jensen B W, Jacobsen T. Sol. Energy Mater. Sol. Cells, 2006, 90: 341—351
[33] Chen J, Wei H, Ho K. Sol. Energy Mater. Sol. Cells, 2007, 91: 1472—1477
[34] Wang M, Anghel A M, Marsan B, Zakeeruddin S M, Grtzel M. J. Am. Chem. Soc., 2009, 131: 15976—15977
[35] Wu J, Lan Z, Hao S, Lin J, Huang M. Pure Appl. Chem., 2008, 80: 2241—2258
[36] Wu J, Hao S, Lan Z, Lin J, Huang M, Huang Y, Fan L, Yin S, Sato T. Adv. Funct. Mater., 2007, 17: 2645—2652
[37] Wu J, Lan Z, Lin J, Huang M, Hao S, Sato T, Yin S. Adv. Mater., 2007, 19: 4006 —4011
[38] Wu J, Hao S, Lan Z, Lin J, Huang M, Huang Y, Li P, Yin S, Sato T. J. Am. Chem. Soc., 2008, 130: 11568—11569

[1] Bingguo Zhao, Yadi Liu, Haoran Hu, Yangjun Zhang, Zezhi Zeng. Electrophoretic Deposition in the Preparation of Electrolyte Thin Films for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2023, 35(5): 794-806.
[2] Yan Bao, Jiachen Xu, Ruyue Guo, Jianzhong Ma. High-Sensitivity Flexible Pressure Sensor Based on Micro-Nano Structure [J]. Progress in Chemistry, 2023, 35(5): 709-720.
[3] Yu Xiaoyan, Li Meng, Wei Lei, Qiu Jingyi, Cao Gaoping, Wen Yuehua. Application of Polyacrylonitrile in the Electrolytes of Lithium Metal Battery [J]. Progress in Chemistry, 2023, 35(3): 390-406.
[4] Dong Baokun, Zhang Ting, He Fan. Research Progress and Application of Flexible Thermoelectric Materials [J]. Progress in Chemistry, 2023, 35(3): 433-444.
[5] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[6] Jiyang Lu, Tiantian Wang, Xiangxiang Li, Fuming Wu, Hui Yang, Wenping Hu. Flexible Sensors Based on Electrohydrodynamic Jet Printing [J]. Progress in Chemistry, 2022, 34(9): 1982-1995.
[7] Hongji Jiang, Meili Wang, Zhiwei Lu, Shanghui Ye, Xiaochen Dong. Graphene-Based Artificial Intelligence Flexible Sensors [J]. Progress in Chemistry, 2022, 34(5): 1166-1180.
[8] Xumin Wang, Shuping Li, Renjie He, Chuang Yu, Jia Xie, Shijie Cheng. Quasi-Solid-State Conversion Mechanism for Sulfur Cathodes [J]. Progress in Chemistry, 2022, 34(4): 909-925.
[9] Yue Gong, Yizhu Cheng, Yinchun Hu. Preparation of Polymer Conductive Hydrogel and Its Application in Flexible Wearable Electronic Devices [J]. Progress in Chemistry, 2022, 34(3): 616-629.
[10] Qi Huang, Zhenyu Xing. Advances in Lithium Selenium Batteries [J]. Progress in Chemistry, 2022, 34(11): 2517-2539.
[11] Zhao Jing, Wang Ziya, Mo Lixin, Meng Xiangyou, Li Luhai, Peng Zhengchun. Performance Enhancing Mechanism,Implementation and Practical Advantages of Microstructured Flexible Pressure Sensors [J]. Progress in Chemistry, 2022, 34(10): 2202-2221.
[12] Long Chen, Shaobo Huang, Jingyi Qiu, Hao Zhang, Gaoping Cao. Polymer Electrolyte/Anode Interface in Solid-State Lithium Battery [J]. Progress in Chemistry, 2021, 33(8): 1378-1389.
[13] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[14] Wentao Li, Hai Zhong, Yaohua Mai. In-Situ Polymerization Electrolytes for Lithium Rechargeable Batteries [J]. Progress in Chemistry, 2021, 33(6): 988-997.
[15] Lujie Fan, Li Chen, Yin He, Hao Liu. Flexible Pressure/Strain Sensors Based on 3D Conductive Materials [J]. Progress in Chemistry, 2021, 33(5): 767-778.