中文
Announcement
More
Progress in Chemistry 2010, Vol. 22 Issue (11): 2238-2247 Previous Articles   Next Articles

• Review •

Hydrogen Storage by Encapsulation on Porous Materials

Li Jing1  Wu Erdong1* Geng Changjian Xiaoming Du3   

  1. (1. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2. Department of Material Science and Engineering, Institute of Science Research, Northeastern University, Shenyang 110005, China 3. Institute of Material Science and Engineering, Shenyang Ligong University, Shenyang 110168, China)
  • Received: Revised: Online: Published:
  • Contact: Li Jing E-mail:jingli@imr.ac.cn
PDF ( 1041 ) Cited
Export

EndNote

Ris

BibTeX

Hydrogen storage is a key to the utility of hydrogen as a renewable energy source. The encapsulation of hydrogen on porous materials has its special advantages. In this review, the fundamentals of the encapsulation are briefly introduced. The relevant porous materials of zeolites, metal coordination compounds, hollow glass microspheres, fullerenes and their derivative, and their characteristics on encapsulation of hydrogen are addressed in details. Recent progresses on the studies of the encapsulation of hydrogen on porous materials are summarized. The differences between the encapsulation and physical adsorption of hydrogen on porous materials are analyzed based on their required operation conditions, material specifications and energy barriers. Finally, the perspectives of the applications and further studies on the encapsulation of hydrogen are discussed.

Contents
1 Introduction
2 Fundamentals of encapsulation
3 Porous materials for hydrogen encapsulation
3.1 Zeolites
3.2 Metal coordination compounds
3.3 Hollow glass microspheres
3.4 Fullerenes and their derivatives
4 Conclusions

[1] 梁治齐(Liang Z Q), 劳国强(Lao G Q). 微胶囊技术及其应用(Microcapsule Technology and Application), 北京: 中国轻工业出版社(Beijing: China Light Industry Press), 1999, 4
[2] Saha D, Deng S G. Langmuir, 2009, 25: 12550—12560
[3] Acatrinei A I, Hartl M A, Eckert J, Falcao E H L, Chertkov G, Daemen L L. J. Phys. Chem. C, 2009, 113: 15634—15638
[4] Vitillo J G, Ricchiardi G, Spoto G, Zecchina A. Phys. Chem. Chem. Phys., 2005, 7: 3948—3954
[5] 杜晓明(Du X M), 李静(Li J), 吴尔冬(Wu E D). 化学进展(Progress in Chemistry), 2010, 22: 248—254
[6] Eklund G, von Krusenstierna O. Int. J. Hydrogen Energy, 1983, 8: 463—470
[7] 王宜辰(Wang Y C). 烟台师范学院学报(Yantai Teachers University Journal), 1993, 9: 76—78
[8] Rodriguez-Diaz J M, Santos-Martin M T. Chemometr. Intell. Lab. Sys., 2009, 95: 199—208
[9] 徐如人(Xu R R), 庞文琴(Pang W Q). 分子筛与多孔材料化学(Chemistry of Zeolites and Porous Materials), 北京: 科学出版社(Beijing: Scientific Press), 2004. 3
[10] Sesny W J, Shaffer L H. US 331669, 1967
[11] Barrer R M, Vaughan D E W. Trans. Faraday Soc., 1967, 63: 2275—2289
[12] Barrer R M, Vaughan D E W. Surf. Sci., 1969, 14: 77—87
[13] Barrer R M, Vaughan D E W. J. Phys. Chem. Solids, 1971, 32: 731—745
[14] Fraenkel D, Shabtai J. J. Am. Chem. Soc., 1977, 14: 7074—7076
[15] Fraenkel D. J. Chem. Soc., Faraday Trans., 1981, 77: 2029—2039
[16] Fraenkel D, Levy A. J. Chem. Soc. Faraday Trans., 1988, 84: 1817—1834
[17] Angelos M E, Steven L S, Carroll O B. J. Catal., 1990, 123: 456—462
[18] Efstathiou A M, Borgstedt E V R, Suib S L, Bennett C O. J. Catal. 1992, 135: 135—146
[19] Weitkamp J, Fritz M, Ernst S. Int. J. Hydrogen Energy, 1995, 20: 967—970
[20] Krishnan V V, Suib S L, Corbin D R, Schwarz S, Jones G E. Catalysis Today, 1996, 31: 199—205
[21] Song M K, Kim J S, No K T. Appl. Surf. Sci., 2007, 253: 5696—5700
[22] Wester F, Schnick W Z. Anor. Allg. Chem., 1996, 622: 1281—1287
[23] Weitkamp J, Ernst S, Cubero F, Wester F, Schnick W. Adv. Mater., 1997, 9: 247—248
[24] Rosi N L, Eckert J, Eddaoudi M, Vodak D T, Kim J, OKeeffe M, Yaghi O M. Science, 2003, 300: 1127—1129
[25] Teitel R J. US 4302217, 1981
[26] 张占文(Zhang Z W), 唐永建(Tang Y J), 王朝阳(Wang C Y), 李波(Li B), 漆小波(Qi X B). 化工学报(Journey of Chemistry Industry and Engine), 2006, 57: 1677—1681
[27] Schmitt M L, Shelby J E, Hall M M. J. Non-Crystalline Solids, 2006, 352: 626—631
[28] Kohli D K, Khardekar R K, Singh R, Gupta P K. Int. J. Hydrogen Energy, 2008, 33: 417—422
[29] Rambach G D, Hendricks C. Proc. 1996 USDOE Hydrogen Program Review Meeting. Miami: National Renewable Energy Laboratory, 1996, 765
[30] Rapp D B, Shelby J E. J. Non-Crystal. Solids, 2004, 349: 254—259
[31] Snyder M J, Wachtel P B, Hall M M, Shelby J E. Phys. Chem. Glasses -European J. Glass Sci. Tech. B, 2009, 50: 113—118
[32] 杨英惠(Yang Y H)摘译. 现代材料动态(Information of Advanced Materials)2009, 8: 4
[33] Kean L L, Hossein K, Zahira Y, Wan R W D. Chem. Eng. Technol., 2010, 33: 213—226
[34] 张占文(Zhang Z W), 唐永建(Tang Y J), 李波(Li B), 王朝阳(Wang C Y), 漆小波(Qi X B), 陈素芬(Chen S F), 刘一杨(Liu Y Y), 翟世明(Zhai S M). 硅酸盐通报(Bulletin of the Chinese Ceramic Society), 2006, 25: 172—175
[35] 李波(Li B), 陈素芬(Chen S F), 漆小波(Qi X B), 张占文(Zhang Z W), 刘一扬(Liu Y Y). 强激光与粒子束(High Power Laser and Particle Beams), 2009, 21: 1489—1491
[36] Qiu L Q, Fu Y B, Tang Y J. Sci. China, 2002, 45: 371—375
[37] 麦松威(Mai S W), 周公度(Zhou G D), 李伟基(Li W J). 高等无机结构化学(High Inorganic Structure Chemistry), 北京大学出版社, 香港中文大学出版社(Beijing University Press and Hongkong Chinese University Press), 2001, 378
[38] Rubin Y, Jarrosson T, Wang G W, Bartberger M D, Houk K N, Schick G, Saunders M, Cross R J. Angew. Chem. Int. Ed., 2001, 40: 1543—1546
[39] Georgios C V, Manolis M R, Michael O. Chem. Soc. Rev., 2010, 39: 817—844
[40] Murata Y, Murata M, Komatsu K. J. Am. Chem. Soc., 2003, 125: 7152—7153
[41] Türker L, Erko.J.Mol. Struct. (Theochem), 2003, 638: 37—40
[42] Dolgonos G. J Mol. Struct. (Theochem), 2005, 723: 239—241
[43] Ren Y X, Ng T Y, Liew K M. Carbon, 2006, 44: 397—406
[44] Murata Y, Maeda S, Murata M, Komatsu K. J. Am. Chem. Soc., 2008, 130: 6702—6703
[45] Ganji M D, Physica E. 2009, 41: 1433—1438
[46] Delgado J L, Espildora E, Liedtke M, Sperlich A, Rauh D, Baumann A, Deibel C, Dyakonov V, Martin N. Chemistry A European Journal, 2009, 15: 13474—13482
[47] Krtschmer W, Lamb L D, Fostiropoulos K, Donald R H. Nature, l990, 347: 354—358
[48] Koi N, Oku T. Solid State Commun., 2004, 131: 121—124
[49] Koi N, Oku T. Sci. Tech. Adv. Mater., 2004, 5: 625—628
[50] Song L C, Su F H, Hu Q M, Grigiotti E, Zanello P. Eur. J. Inorg. Chem., 2006, 2: 422—429
[51] 张军平(Zhang J P), 王乃兴(Wang N X), 汪武卫(Wang W W), 赵嘉(Zhao J), 王桂霞(Wang G X), 唐石(Tang S). 有机化学(Chinese Journey of Organic Chemistry), 2006, 26: 922—927
[52] Wernberger B, Lamari F D, Veziroglu A, Beyaz S, Beauverger M. Int. J. Hydrogen Energy, 2009, 34: 3191—3196
[53] Fraenkel D, Ittah B, Levy M. J. Chem. Soc., Faraday Trans., 1988, 84: 1835—1845
[54] Yucel H, Ruthven D M. J. Chem. Soc., Faraday Trans., 1980, 76: 60—70

[1] Jie Wang, Yaqing Feng, Bao Zhang. MOF-COF Hybrid Frameworks Materials [J]. Progress in Chemistry, 2022, 34(6): 1308-1320.
[2] Bo Tang, Wei Wang, Aiqin Luo. New Porous Materials Used as Chiral Stationary Phase for Chromatography [J]. Progress in Chemistry, 2022, 34(2): 328-341.
[3] Zhao Ding, Weijie Yang, Kaifu Huo, Leon Shaw. Thermodynamics and Kinetics Tuning of LiBH4 for Hydrogen Storage [J]. Progress in Chemistry, 2021, 33(9): 1586-1597.
[4] Jianlin Shi, Zile Hua. Condensed State Chemistry in the Synthesis of Inorganic Nano- and Porous Materials [J]. Progress in Chemistry, 2020, 32(8): 1060-1075.
[5] Tingting Gu, Jian Gu, Yu Zhang, Hua Ren. Metal Borohydride-Based System for Solid-State Hydrogen Storage [J]. Progress in Chemistry, 2020, 32(5): 665-686.
[6] Suyan Zhao, Chang Liu, Hao Xu, Xiaobo Yang. Two-Dimensional Covalent Organic Frameworks Photocatalysts [J]. Progress in Chemistry, 2020, 32(2/3): 274-285.
[7] Qilu Yao, Hongxia Du, Zhang-Hui Lu. Catalytic Hydrolysis of Ammonia Borane for Hydrogen Production [J]. Progress in Chemistry, 2020, 32(12): 1930-1951.
[8] Qiang Jia, Hongwei Song, Sheng Tang, Jing Wang, Yinxian Peng. Synthesis of the Functionalized Porous Materials and Their Applications in the Specific Recognition and Separation [J]. Progress in Chemistry, 2019, 31(8): 1148-1158.
[9] Jie Liu, Yuan Zeng, Jun Zhang, Haijun Zhang, Jianghao Liu. Preparation, Structures and Properties of Three-Dimensional Graphene-Based Materials [J]. Progress in Chemistry, 2019, 31(5): 667-680.
[10] Yi Han, Haiqing Dong, Sheng Li, Weida Li, Yongyong Li. Islet Encapsulation and Its Application in Islet Transplantation [J]. Progress in Chemistry, 2018, 30(11): 1660-1668.
[11] Shiliang Zhang, Qilu Yao, Zhanghui Lu*. Synthesis and Dehydrogenation of Hydrazine Borane [J]. Progress in Chemistry, 2017, 29(4): 426-434.
[12] Xinxin Jiang, Chengjun Zhao, Chunju Zhong, Jianping Li*. The Electrochemical Sensors Based on MOF and Their Applications [J]. Progress in Chemistry, 2017, 29(10): 1206-1214.
[13] Yu Xianglin, Chen Xiaojiao, Zhang Biyu, Rao Cong, He Yuan, Li Junbo. Ordered Mesoporous Material-Based Fluorescence Probes and Their Applications [J]. Progress in Chemistry, 2016, 28(6): 896-907.
[14] Li Chao, Fan Meiqiang, Chen Haichao, Chen Da, Tian Guanglei, Shu Kangying. Thermodynamics and Kinetics Modifications on the Li-Mg-N-H Hydrogen Storage System [J]. Progress in Chemistry, 2016, 28(12): 1788-1797.
[15] Yu Na, Ding Huimin, Wang Cheng. Synthesis and Application of Organic Molecular Cages [J]. Progress in Chemistry, 2016, 28(12): 1721-1731.