中文
Announcement
More
Progress in Chemistry 2010, Vol. 22 Issue (11): 2232-2237 Previous Articles   Next Articles

• Review •

Progress on the Study of the Application of Nanomaterials in Tissue Engineering

Zhang Jinchao**  Liu Dandan  Zhou Guoqiang  Shen Shigang   

  1. (College of Chemistry & Enviromental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China)
  • Received: Revised: Online: Published:
  • Contact: Zhang Jinchao E-mail:jczhang6970@yahoo.com.cn
PDF ( 1045 ) Cited
Export

EndNote

Ris

BibTeX

The tissue engineering nanomaterials, which are produced from traditional tissue engineering nanomaterials by nanotechnology, have special biology properties and have been already paid attention to. In recent years, the studies on application of nanomaterials in tissue engineering fields have been of great interest. The applications of nano-phase ceramics, carbon nanotubes, carbon nanowires and nano metallic materials in bone and cartilage tissue engineering, titanium nanomaterials, polylactide-dl-lactide nanomaterials and carbon nanofibers in artery tissue engineering, polypeptide nano bone frameworks, nano-fibrous scaffolds and carbon nanotubes/fibers in neural tissue engineering, nano-structured polymers in bladder tissue engineering, have already been reported. The results indicate that nanomaterials have potential application foreground. This review focuses on the applications and prospects of nanomaterials in bone and cartilage tissue engineering, artery tissue engineering, neural tissue engineering and bladder tissue engineering.

Contents
1 Introduction
2 The applications of nanomaterials in tissue engineering
2.1 The applications of nanomaterials in bone and cartilage tissue engineering
2.2 The applications of nanomaterials in artery tissue engineering
2.3 The applications of nanomaterials in neural tissue engineering 
2.4 The applications of nanomaterials inbladder tissue engineering 
3. Conclusions and outlook

CLC Number: 

[1] 卢柯(Lu K), 周飞(Zhou F). 金属学报(Acta Metallurgica Sinica), 1997, 33(1): 99—101
[2] Langer R, Vacanti J P. Science, 1993, 260(5110): 920—926
[3] Webster T J. Advancesin Chemical Engineering. New York: Academic Press, 2001. 125—166
[4] Taton T A. Nature, 2001, 412: 491—492
[5] 罗萍(Luo P), 张阳德(Zhang Y D), 彭健(Peng J). 中国现代医学杂志(China Journal of Modern Medicine), 2003, 13(18): 1—6
[6] Kikuchi M, Itoh S, Ichinose S, Shinomiya K, Tanaka J. Biomaterials, 2001, 22(13): 1705—1711
[7] Nukavarapu S P, Kumbar S G, Brown J L, Krogman N R, Weikel A L, Hindenlang M D, Nair L S, Laurencin C T, Allcock H R. Biomacromolecules, 2008, 9(7): 1818—1825
[8] Colon G, Ward B C, Webster T J. J. Biomed. Mater. Res. A, 2006, 78(3): 595—604
[9] Webster T J, Hellenmeyer E L, Price R L. Biomaterials, 2005, 26(9): 953—960
[10] Price R L, Waid M C, Haberstroh K M, Webster T J. Biomaterials, 2003, 24(11): 1877—1887
[11] Sitharaman B, Shi X, Walboomers X F, Liao H, Cuijpers V, Wilson L J, Mikos A G, Jansen J A. Bone, 2008, 43(2): 362—370
[12] Zhang D W, Yi C Q, Zhang J C, Chen Y, Yao X S, Yang M S. Nanotechnology, 2007, 18(47): 475102—475110
[13] Liu D D, Yi C Q, Zhang D W, Zhang J C, Yang M S. ACS Nano, 2010, 4(4): 2185—2195
[14] 张金超(Zhang J C), 刘丹丹(Liu D D), 易长青(Yi C Q), 杨梦甦(Yang M S). 科学通报(Chinese Science Bulletin), 2010, 55(6): 435—441
[15] Webster T J, Ejiofor J U. Biomaterials, 2004, 25(19): 4731—4739
[16] Popat K C, Leoni L, Grimes C A, Desai T A. Biomaterials, 2007, 28(21): 3188—3197
[17] Hartgerink J D, Beniash E, Stupp S I. Science, 2001, 294(5547): 1684—1688
[18] Hosseinkhani H, Hosseinkhani M, Tian F, Kobayashi H, Tabata Y. Biomaterials, 2006, 27(22): 4079—4086
[19] 沈铁城(Shen T C), 黄永辉(Huang Y H), 徐晓峰(Xu X F), 崔福斋(Cui F Z), 李艳(Li Y), 任永娟(Ren Y J). 医学研究杂志(Journal of Medical Research), 2006, 35(4): 70—73
[20] Choudhary S, Haberstroh K M, Webster T J. Tissue. Eng., 2007, 13(7): 1421—1430
[21] Miller D C, Thapa A, Haberstroh K M, Webster T J. Biomaterials, 2004, 25(1): 53—61
[22] Miller D C, Haberstroh K M, Webster T J. J. Biomed. Mater. Res. A, 2005, 73(4): 476—484
[23] Miller D C, Haberstroh K M, Webster T J. J. Biomed. Mater. Res. A, 2007, 81(3): 678—684
[24] Lee S J, Yoo J J, Lim G J, Atala A, Stitzel J. J. Biomed. Mater. Res. A, 2007, 83(4): 999—1008
[25] Xu C Y, Inai R, Kotaki M, Ramakrishna S. Biomaterials, 2004, 25(5): 877—886
[26] Genove E, Shen C, Zhang S, Semino C E. Biomaterials, 2005, 26(16): 3341—3345
[27] Bahr M, Bonhoeffer F. Trends. Neurosci., 1994, 17(11): 473—479
[28] Zhang N, Yan H, Wen X. Brain. Res. Rev., 2005, 49(1): 48—64
[29] Huang Y C, Huang Y Y. Artif. Organs., 2006, 30(7): 514—522
[30] Evans G R D. Anat. Rec., 2001, 263(4): 396—404
[31] Terzis J K, Sun D D, Thanos P K. J. Reconstr. Microsurg., 1997, 13(3): 215—225
[32] Zalewski A A, Gulati A K. Transplantation, 1981, 31(1): 88—89
[33] Koh H S, Yong T, Chan C K, Ramakrishna S. Biomaterials, 2008, 29(26): 3574—3582
[34] Prabhakaran M P, Venugopal J R, Chyan T T, Hai L B, Chan C K, Lim A Y, Ramkrishna S. Tissue Eng A, 2008, 14(11): 1787—1797
[35] Holmes T C, Lacalle S D, Su X, Liu G, Rich A, Zhang S. PNAS, 2000, 97(12): 6728—6733
[36] Ellis-Behnke R G, Liang Y X, You S W, Tay D K, Zhang S, So K F, Schneider G E. PNAS, 2006, 103(13): 5054—5059
[37] Mattson M P, Haddon R C, Rao A M. J. Mol. Neurosci., 2000, 14(3): 175—182
[38] Hu H, Ni Y, Montana V, Haddon, R C, Parpura V. Nano Lett., 2004, 4(3): 507—511
[39] Lovat V, Pantarotto D, Lagostena L, Cacciari B, Grandolfo M, Righi M, Spalluto G, Prato M, Ballerini L. Nano Lett., 2005, 5(6): 1107—1110
[40] Gheith M K, Sinani V A, Wicksted J P, Matts R L, Kotov N A. Adv. Mater., 2005, 17(22): 2663—2670
[41] McKenzie J L, Waid M C, Shi R, Webster T J. Biomaterials, 2004, 25(7/8): 1309—1317
[42] Nguyen-Vu T D B, Chen H, Cassell A M, Andrews R, Meyyappan M, Li J. IEEE. Trans. Biomed. Eng., 2007, 54(6): 1121—1128
[43] Gabay T, Jakobs E, Ben-Jacob E, Hanein Y. Physica A: Statistical Mechanics and its Applications, 2005, 350(2/4): 611—621
[44] Reynolds B A, Weiss S. Science, 1992, 255(5052): 1707—1710
[45] Harrington D A, Sharma A K, Erickson B A, Cheng E Y. World J. Urol., 2008, 26(4): 315—322
[46] Harrington D A, Cheng E Y, Guler M O, Lee L K, Donovan J L, Claussen R C, Stupp S I. J. Biomed. Mater. Res. A, 2006, 78(1): 157—167
[47] Baker S C, Atkin N, Gunning P A, Granville N, Wilson N, Wilson D, Southgate J. Biomaterials, 2006, 27(16): 3136—3146
[48] Thapa A, Miller D C, Webster T J, Haberstroh K M. Biomaterials, 2003, 24(17): 2915—2926
[49] Pattison M A, Webster T J, Leslie J, Haberstroh K M. Macromol. Biosci., 2007, 7(5): 690—700
[50] Pattison M A, Wurster S, Webster T J, Haberstroh K M. Biomaterials, 2005, 26(15): 2491—2500

[1] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[2] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[3] Xu Zhang, Lei Zhang, Shanen Huang, Zhifang Chai, Weiqun Shi. Preparation of Salt-Inclusion Materials in High-Temperature Molten Salt System and Their Potential Application [J]. Progress in Chemistry, 2022, 34(9): 1947-1956.
[4] Jin Zhou, Pengpeng Chen. Modification of 2D Nanomaterials and Their Applications in Environment Pollution Treatment [J]. Progress in Chemistry, 2022, 34(6): 1414-1430.
[5] Shuaiwei Peng, Zhuofu Tang, Bing Lei, Zhiyuan Feng, Honglei Guo, Guozhe Meng. Design and Application of Bionic Surface for Directional Liquid Transportation [J]. Progress in Chemistry, 2022, 34(6): 1321-1336.
[6] Jiahui Ma, Wei Yuan, Simin Liu, Zhiyong Zhao. Self-Assembly of Small Molecule Modified DNA and Their Application in Biomedicine [J]. Progress in Chemistry, 2022, 34(4): 837-845.
[7] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[8] Xiaolian Niu, Kejun Liu, Ziming Liao, Huilun Xu, Weiyi Chen, Di Huang. Electrospinning Nanofibers Based on Bone Tissue Engineering [J]. Progress in Chemistry, 2022, 34(2): 342-355.
[9] Xueer Cai, Meiling Jian, Shaohong Zhou, Zefeng Wang, Kemin Wang, Jianbo Liu. Chemical Construction of Artificial Cells and Their Biomedical Applications [J]. Progress in Chemistry, 2022, 34(11): 2462-2475.
[10] Bin Li, Ying Yu, Guoxiang Xing, Jinfeng Xing, Wanxing Liu, Tianyong Zhang. Progress in Circularly Polarized Light Emission of Chiral Inorganic Nanomaterials [J]. Progress in Chemistry, 2022, 34(11): 2340-2350.
[11] Zitong Zhao, Zhenzhen Zhang, Zhihong Liang. The Activity Origin, Catalytic Mechanism and Future Application of Peptide-Based Artificial Hydrolase [J]. Progress in Chemistry, 2022, 34(11): 2386-2404.
[12] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[13] Chenyang Qi, Jing Tu. Antibiotic-Free Nanomaterial-Based Antibacterial Agents:Current Status, Challenges and Perspectives [J]. Progress in Chemistry, 2022, 34(11): 2540-2560.
[14] Haodong Ji, Juanjuan Qi, Maosheng Zheng, Chenyuan Dang, Long Chen, Taobo Huang, Wen Liu. Application of Nanotechnology for Virus Inactivation in Water:Implications for Transmission-Blocking of the Novel Coronavirus SARS-CoV-2 [J]. Progress in Chemistry, 2022, 34(1): 207-226.
[15] Jiali Wang, Ling Zhu, Chen Wang, Shengbin Lei, Yanlian Yang. Nanotechnology for Detection of Circulating Tumor Cells and Extracellular Vesicles [J]. Progress in Chemistry, 2022, 34(1): 178-197.