中文
Announcement
More
Progress in Chemistry 2010, Vol. 22 Issue (11): 2224-2231 Previous Articles   Next Articles

• Review •

Bio-inspired Mineralization Process in Gel Media

Shi Ying   Geng Jiaqing   Yang Dong   

  1. (Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China)
  • Received: Revised: Online: Published:
  • Contact: Yang Dong E-mail:dongyang@tju.edu.cn
PDF ( 1331 ) Cited
Export

EndNote

Ris

BibTeX

This review introduces the research progress of the bio-inspired mineralization process in the gel medium. Bio-inspired mineralization is the leading edge and hotspot of the research in the fields including chemistry, biology and materials science at present. Recently, more and more efforts prove that the biomolecules, such as the protein and polysaccharide, usually form the gelatinous reticular matrix in the organism, which can influence the biomineralization process. Therefore, the research of bio-inspired mineralization processes in the gel medium is important to understand the biomineralization mechanism, and guide the design and synthesis of advanced functional materials. Until now, the bio-inspired mineralization process in the gel media including the natural and man-made macromolecule gel, supermolecule hydrogel, and inorganic gel, and so on, has been investigated. The current experimental results show that the gel media control the morphology of inorganic crystals by primarily inhibiting the diffusion of reactant ions in their network structure and doping into the formed crystals. Moreover, the bio-inspired mineralization in the gel medium cooperating with organic matrices, such as water-soluble additives and self-assembled mono-layers (SAMs), exhibits different characters from that in aqueous solution. In addition, this review also introduces several opinions about the bio-inspired mineralization mechanism of inorganic crystals formed in the gel medium. At last, the development trend of the research and application in this field is expected.

Contents
1 Introduction
2 Bio-inspired mineralization in gel media
2.1 Natural macromolecule gel
2.2 Man-made macromolecule gel
2.3 Supermolecule hydrogel
2.4 Inorganic gel
3 Effect of organic matrices on bio-inspired mineralization in gel media
3.1 Water-soluble additives
3.2 Self-assembled mono-layers, SAMs
4 Mechanism of bio-inspired mineralization in gel medium
5 Conclusions and outlook

CLC Number: 

[1] Kunz W, Kellermeier M. Science, 2009, 323(5912): 344—345
[2] Meldrum F C, Clfen H. Chem. Rev., 2008, 108(11): 4332—4432
[3] Sommerdijk N A J M, de With G. Chem. Rev., 2008, 108(11): 4499—4550
[4] Cusack M, Freer A. Chem. Rev., 2008, 108(11): 4433—4454
[5] Gower L B. Chem. Rev., 2008, 108(11): 4551—4627
[6] Xu A W, Ma Y R, Clfen H. J. Mater. Chem., 2007, 17(5): 415—449
[7] 欧阳健明(Ouyang J M). 生物矿化的基质调控及其仿生应用(Regulations of Biomineralization by Matrix and Applications of Biomimetic). 北京:化学工业出版社(Beijing:Chemical Industry Press), 2006, 188—205
[8] 冯庆玲(Feng Q L), 侯文涛(Hou W T), 清华大学学报(自然科学版)(Journal of Tsinghua University (Natural Science Edition)), 2006, 46(12): 2019—2023
[9] Addadi L, Joester D, Nudelman F, Weiner S. Chem. Eur. J., 2006, 12(4): 980—987
[10] Collino S, Evans J S. Biomacromolecules, 2008, 9(7): 1909—1918
[11] Chellgren B W, Creamer T P. Biochemistry, 2004, 43(19): 5864—5869
[12] 顾雪蓉(Gu X R), 朱育平(Zhu Y P). 凝胶化学(Gel Chemistry). 北京:化学工业出版社(Beijing: Chemical Industry Press), 2005, 22
[13] Yang D, Qi L M, Ma J M. Chem. Commun., 2003, 10: 1180—1181
[14] Li H Y, Estroff L A. CrystEngComm., 2007, 9: 1153—1155
[15] Oaki Y, Hayashi S, Imai H. Chem. Commum., 2007, 27: 2841—2843
[16] Watanabe J, Akashi M. Biomacromolecules, 2006, 7(11): 3008—3011
[17] Watanabe J, Akashi M. Cryst. Growth Des., 2008, 8(2): 478—482
[18] 沈钟(Shen Z), 赵振国(Zhao Z G), 王果庭(Wang G T). 胶体与表面化学(Colloid and Surface Chemistry). 北京:化学工业出版社(Beijing: Chemical Industry Press), 2004, 146
[19] Grassmann O, Müller G, Lbmann P. Chem, Mater., 2002, 14(11): 4530—4535
[20] Huang Y X, Buder J, Cardoso-Gil R, Prots Y, Carrillo-Cabrera W, Simon P, Kniep R. Angew. Chem. Int. Ed., 2008, 47(43): 8280—8284
[21] Ethirajan A, Ziener U, Chuvilin A, Kaiser U, Clfen H, Landfester K. Adv. Funct. Mater., 2008, 18(15): 2221—2227
[22] Imai H, Tatara S, Furuichi K, Oaki Y. Chem. Commun., 2003, (15): 1952—1953
[23] Grassmann O, Neder R B, Putnis A, Lbmann P. Am. Mineral., 2003, 88(4): 647—652
[24] Grassmann O, Lbmann P. Chem. Eur. J., 2003, 9(6): 1310—1316
[25] Grassmann O, Lbmann P. Biomaterials, 2004, 25(2): 277—282
[26] Helbig U. J. Cryst. Growth., 2008, 310(11): 2863—2870
[27] Zhao J, Li Y J, Cheng G X. Chin. Sci. Bull., 2007, 52(13): 1796—1801
[28] Kuang M, Wang D Y, Gao M Y, Hartmann J, Mhwald H. Chem. Mater., 2005, 17(3): 656—660
[29] Estroff L A, Addadi L, Weiner S, Hamilton A D. Org. Biomol. Chem., 2004, 2: 137—141
[30] Schnepp Z A C, Gonzalez-McQuire R, Mann S. Adv. Mater., 2006, 18(14): 1869—1872
[31] Shi N E, Yin G, Han M, Xu Z. Colloids Surf. B: Biointerfaces., 2008, 66(1): 84—89
[32] Imai H, Terada T, Yamabi S. Chem. Commun., 2003, (4): 484—485
[33] Imai H, Terada T, Miura T, Yamabi S. J. Cryst. Growth, 2002, 244(2): 200—205
[34] Terada T, Yamabi S, Imai H. J. Cryst. Growth, 2003, 253(1/4): 435—444
[35] 欧阳健明(Ouyang J M), 李祥平(Li X P). 物理化学学报(Acta Phys. -Chim. Sin. ), 2004, 20(2): 169—172
[36] Deng S P, Ouyang J M. Chin. J. Chem., 2007, 25: 1379—1384
[37] Sugawara A, Ishii T, Kato T. Angew. Chem. Int. Ed., 2003, 42(43): 5299—5303
[38] Falini G, Fermani S, Gazzano M, Ripamonti A. Chem. Eur. J., 1998, 4(6): 1048—1052
[39] Falini G. Int. J. Inorg. Mater., 2000, 2(5): 455—461
[40] Falini G, Fermani S, Gazzano M, Ripamonti A. J. Chem. Soc. Dalton. Trans., 2000, 3: 3983—3987
[41] Jiménez-Corona A E, Pérez-Torres A, Mas-Oliva J, Moreno A. Cryst. Growth Des., 2008, 8(4): 1335—1339
[42] Li H Y, Estroff L A. J. Am. Chem. Soc., 2007, 129(17): 5480—5483
[43] Oaki Y, Imai H. Cryst. Growth. Des., 2003, 3(5): 711—716
[44] Imai H, Oaki Y, Kotachi A. Bull. Chem. Soc. Jpn., 2006, 79(12): 1834—1851
[45] Li H Y, Estroff L A. Adv. Mater., 2009, 21(4): 470—473
[46] Li H, Xin H L, Muller D A, Estroff L A. Science, 2009, 326: 1244—1247
[47] Oaki Y, Kotachi A, Miura T, Imai H. Adv. Funct. Mater., 2006, 16(12): 1633—1639
[48] Zhou L, OBrien P. Small, 2008, 4(10): 1566—1574
[49] Sumper M, Brunner E. ChemBioChem, 2008, 9(8): 1187—1194

[1] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[2] Yiming Chen, Huiying Li, Peng Ni, Yan Fang, Haiqing Liu, Yunxiang Weng. Catechol Hydrogel as Wet Tissue Adhesive [J]. Progress in Chemistry, 2023, 35(4): 560-576.
[3] Yu Xiaoyan, Li Meng, Wei Lei, Qiu Jingyi, Cao Gaoping, Wen Yuehua. Application of Polyacrylonitrile in the Electrolytes of Lithium Metal Battery [J]. Progress in Chemistry, 2023, 35(3): 390-406.
[4] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[5] Fengqi Liu, Yonggang Jiang, Fei Peng, Junzong Feng, Liangjun Li, Jian Feng. Preparation and Application of Ultralight Nanofiber Aerogels [J]. Progress in Chemistry, 2022, 34(6): 1384-1401.
[6] Liyuan Wang, Meng Zhang, Jing Wang, Ling Yuan, Lin Ren, Qingyu Gao. Bionic Locomotion of Self-oscillating gels [J]. Progress in Chemistry, 2022, 34(4): 824-836.
[7] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[8] Jinfeng Wang, Aisen Li, Zhen Li. The Progress of Room Temperature Phosphorescent Gel [J]. Progress in Chemistry, 2022, 34(3): 487-498.
[9] Yue Gong, Yizhu Cheng, Yinchun Hu. Preparation of Polymer Conductive Hydrogel and Its Application in Flexible Wearable Electronic Devices [J]. Progress in Chemistry, 2022, 34(3): 616-629.
[10] Zhen Zhang, Shuang Zhao, Guobing Chen, Kunfeng Li, Zhifang Fei, Zichun Yang. Preparation and Applications of Silicon Carbide Monolithic Aerogels [J]. Progress in Chemistry, 2021, 33(9): 1511-1524.
[11] Xinhua Cao, Qingqing Han, Aiping Gao, Guixia Wang. Supramolecular Gel with Response Towards Gaseous Acid and Organic Amine [J]. Progress in Chemistry, 2021, 33(9): 1538-1549.
[12] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[13] Wentao Li, Hai Zhong, Yaohua Mai. In-Situ Polymerization Electrolytes for Lithium Rechargeable Batteries [J]. Progress in Chemistry, 2021, 33(6): 988-997.
[14] Liqing Li, Panwang Wu, Jie Ma. Construction of Double Network Gel Adsorbent and Application for Pollutants Removal from Aqueous Solution [J]. Progress in Chemistry, 2021, 33(6): 1010-1025.
[15] Yuzhou Yang, Zheng Li, Yanfeng Huang, Jixian Gong, Changsheng Qiao, Jianfei Zhang. Preparation and Application of MOF-Based Hydrogel Materials [J]. Progress in Chemistry, 2021, 33(5): 726-739.