中文
Announcement
More
Progress in Chemistry 2010, Vol. 22 Issue (11): 2207-2214 Previous Articles   Next Articles

• Review •

Applications of Ultrafiltration Mass Spectrometry in the Studies on  interaction between medicine and biological target

Zhou Hui1,2  Song Fengrui1  Liu Zhiqiang1**  Liu Shuying1   

  1. (1.Changchun Institute of Appilied Chemistry,Chinese Academy of Sciences,Changchun 130022,China ;2.Gradute University of the,Chinese Academy of Sciences,Beijing 100039,China)
  • Received: Revised: Online: Published:
  • Contact: Liu Zhiqiang E-mail:liuzq@ciac.jl.cn
PDF ( 1255 ) Cited
Export

EndNote

Ris

BibTeX

The interaction between medicine and biological target in vivo is one of the most important factors that determine the therapeutic activity of the medicine. Screening medicine that can bind with biological target and show well pharmacological effects will promotes the development of new medicine discovery significantly. therefore, several approaches have been developed to screening of combinatorial libraries and natural product extracts for biologically active compounds. Ultrafiltration mass spectrometry is a combination of ultrafiltration equipment and mass spectrometry, which is a valuable approach for the selection, structure analysis, and identification of low molecular weight compounds that interact with biological target in the solution phase. It has been developed as a powerful tool for the determination of the interaction between medicine and biological target because of its high speed, high sensitivity, and its high throughput screening ability. In this paper, the fundamental principles on which the ultrafiltration mass spectrometry is based, and the experimental details that must be considered during the operation of ultrafiltration equipment are introduced. The developments and applications of the ultrafiltration mass spectrometry in the studies on the interaction between medicine and biological target are reviewed. In addition, the developmental trend of the ultrafiltration mass spectrometry are also discussed.

Contents
1 Introduction
2 The fundamental principles of ultrafiltration mass spectrometry
3 The useful discussion of experimental details that must be considered
4 The recent applications of ultrafiltration mass spectrometry
5 Conclusions and outlook

CLC Number: 

[1] 卢继新(Lu J X),李惠芬(Li H F),蔡乐(Cai L),李娟(Li J),张贵珠(Zhang G Z). 分析科学学报(Journal of Analytical Science), 2007, 23(5): 601—606
[2] Boger D L, Tse W C. Bioorg. Med. Chem., 2001, 9: 2511—2518
[3] Ouameur A A, Marty R, Tajmir-Riahi H A. Biopolymers, 2005, 77: 129—136
[4] Kanakis C D, Tarantilis P A, Polissiou M G, Diamantoglou S, Tajmir-Riahi H A. J. Biomol. Struct. Dyn., 2005, 22: 719—724
[5] 纪竹生(Ji Z S),刘买利(Liu M L),胡继明(Hu J M). 分析化学(Chinese Journal of Analytical Chemistry), 2004, 32(11): 1532—1537
[6] Wang S F, Peng T Z, Yang C F. Biophys. Chem., 2003, 104: 239—248
[7] Pan Y J, Zhang H, Chen Y Z. Chin. Sci. Bull.,2003,48(7):630—633
[8] Zhang H, Gu Q, Liang X L, Pan Y J. Anal. Biochem., 2004, 329: 173—179
[9] Nikolic D, Habibi-Goudarzi S, Corley D G, Gafner S, Pezzuto J M, van Breemen R B. Anal. Chem., 2000, 72: 3853—3859
[10] Chen C J, Chen S, Woodbury C P, Venton D L. Anal. Biochem., 1998, 261: 164—182
[11] Gu C G, Nikolic D, Lai J, Xu X Y, van Breemen R B. Comb. Chem. High Throughput Screening, 1999, 2: 353—359
[12] Van Breemen R B, Woodbury C P, Venton D L. Screening Molecular Diversity Using Pulsed Ultrafiltration Mass Spectrometry. in Mass Spectrometry of Biological Materials (eds. Larsen B S, McEwen C N). New York: Marcel Dekker,1998. 99—113
[13] Van Breemen R B, Nikolic D, Bolton J L. Drug. Metabo. Dispos., 1998, 26: 85—90
[14] Nikolic D, Fan P W, Bolton J L, van Breemen R B. Comb. Chem. High Throughput Screening, 1999, 2: 165—175
[15] 周大炜(Zhou D W),李乐道(Li L D),李发美(Li F M). 色谱(Chinese Journal of Chromatography), 2004, 22(2): 116—120
[16] 吴增茹(Wu Z R),徐筱杰(Xu X J). 分析化学(Chinese Journal of Analytical Chemistry), 2002, 30(1): 101—106
[17] Shin Y G, van Breemen R B. Biopharm. Drug Dispos., 2001, 22: 353—372
[18] Geoghegan K F, Kelly M A. Biopharm. Mass Spectrom. Rev., 2005, 24: 347—366
[19] Hofstadler S A, Sannes-Lowery K A. Nat. Rev. Drug Discov., 2006, 5: 585—595
[20] Calvo E, Camafeita E, Diaz J F, Lopez J A. Curr. Proteomics, 2008, 5: 20—34
[21] Van Breemen R B, Huang C R, Nikolic D, Woodbury C P, Zhao Y Z, Venton D L. Anal. Chem., 1997, 69: 2159—2164
[22] Zhao Y Z, van Breemen R B, Nikolic D, Huang C R, Woodbury C P, Schilling A, Venton D L. J. Med. Chem., 1997, 40: 4006—4012
[23] Nikolic D, van Breemen R B. Comb. Chem. High Throughput Screening, 1998, 1: 47—55
[24] Woodbury C P, Venton D L. J. Chromatogr. B, 1999, 725: 113—137
[25] Johnson B M, Nikolic D, van Breemen R B. Mass Spectrom. Rev., 2002, 21: 76—86
[26] Siegel M M. Curr. Top. Med. Chem., 2002, 2: 13—33
[27] Wieboldt R, Zweigenbaum J, Henion J. Anal. Chem., 1997, 69: 1683—1691
[28] Hannewald P, Maunit B, Muller J F. Anal. Chem., 2006, 78: 4390—4397
[29] Chen Y, Yazdanpanah M, Wang X Y, Hoffman B R, Diamandis E P, Wong P Y. Clin. Bio., 2010, 43: 490—496
[30] Jiang Y, Wang P C, Locascio L E, Lee C S. Anal. Chem., 2001, 73: 2048—2053
[31] Beverly M B, West P, Julian R K. Comb. Chem. High Throughput Screening, 2002, 5: 65—73
[32] Nikolic D, Habibi-Goudarzi S, Corley D G, Gafner S, Pezzuto J M, van Breemen R B. Anal. Chem., 2000, 72: 3853—3859
[33] Liu J H, Burdette J E, Xu H Y, Gu C G, van Breemen R B, Bhat K P L, Booth N, Constantinou A I, Pezzuto J M, Fong H H S, Farnsworth N R, Bolton J L. J. Agric. Food Chem., 2001, 49: 2472—2479
[34] Onorato J, Henion J D. Anal. Chem., 2001, 73: 4704—4710
[35] Liu J H, Carr S, Rinaldi K, Chandler W. Environ. Toxicol. Pharmacol., 2005, 20: 269—278
[36] Menguy T, Chenevois S, Guillain F, Maire M L, Falson P, Champeil P. Anal. Biochem., 1998, 264: 141—148
[37] Sun Y K, Gu C G, Liu X M, Liang W Z, Yao P, Bolton J L, van Breemen R B. J. Am. Soc. Mass. Spectrom., 2005, 16: 271—279
[38] Liu D T, Guo J, Luo Y, Broderick D J, Schimerlik M I, Pezzuto J M, van Breemen R B. Anal. Chem., 2007, 79: 9398—9402
[39] 李惠琳 (Li H L). 中国科学院长春应用化学研究所硕士论文 (Master Dissertation of Changchun Institute of Applied Chemistry, Chinese Academy of Sciences), 2008
[40] Li H L, Song F R, Xing J P, Tsao R, Liu Z Q, Liu S Y. J. Am. Soc. Mass Spectrom., 2009, 20: 1496—1503
[41] Zhou J L, Qian Z M, Luo Y D, Tang D, Chen H, Yi L, Li P. Biomed. Chromatogr., 2008, 22: 1164—1172
[42] 王兆伏 (Wang Z F). 中国科学院长春应用化学研究所博士论文 (Doctoral Dissertation of Changchun Institute of Applied Chemistry, Chinese Academy of Sciences), 2009
[43] Johnson B M, Bolton J L, van Breemen R B. Chem. Res. Toxicol., 2001, 14: 1546—1551
[44] Shin Y G, Bolton J L, van Breemen R B. Comb. Chem. High Throughput Screening, 2002, 5: 59—64

[1] Yizhou Yang, Bingquan Peng, Xiaoling Lei, Haiping Fang. Aromatic Rings in Ion Soultions: Two-Dimensional Crystals of Unconventional Stoichiometries and Ferromagnetism [J]. Progress in Chemistry, 2022, 34(7): 1524-1536.
[2] Li Geng, Li Jie, Jiang Hongyu, Liang Xiaozhong, Guo Kunpeng. Mechano-Responsive Luminescent Polymers [J]. Progress in Chemistry, 2022, 34(10): 2222-2238.
[3] Yang Linyan, Guo Yupeng, Li Zhengjia, Cen Jie, Yao Nan, Li Xiaonian. Modulation of Surface and Interface Properties of Cobalt-Based Fischer-Tropsch Synthesis Catalyst [J]. Progress in Chemistry, 2022, 34(10): 2254-2266.
[4] Zhao Jing, Wang Ziya, Mo Lixin, Meng Xiangyou, Li Luhai, Peng Zhengchun. Performance Enhancing Mechanism,Implementation and Practical Advantages of Microstructured Flexible Pressure Sensors [J]. Progress in Chemistry, 2022, 34(10): 2202-2221.
[5] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
[6] Zhijun Pan, Wei Zhuang, Hongfei Wang. Dynamic Vibrational Spectroscopy in Condensed Matter Chemistry: Theory and Techniques [J]. Progress in Chemistry, 2020, 32(8): 1203-1218.
[7] Yue Ding, Bo Lu, Junhui Ji. Compatibilization Strategies of PLA-Based Biodegradable Materials [J]. Progress in Chemistry, 2020, 32(6): 738-751.
[8] Dan-Wei Zhang, Hui Wang, Zhan-Ting Li. Macromolecular and Supramolecular Helical Tubes: Synthesis and Functions [J]. Progress in Chemistry, 2020, 32(11): 1665-1679.
[9] Hui-Juan Wang, Yu Liu. Molecular Binding and Assembly of Sulfonated Crown Ethers [J]. Progress in Chemistry, 2020, 32(11): 1651-1664.
[10] Yue Liu, Yihan Wu, Hongwei Pang, Xiangxue Wang, Shujun Yu, Xiangke Wang. Study on the Removal of Water Pollutants by Graphite Phase Carbon Nitride Materials [J]. Progress in Chemistry, 2019, 31(6): 831-846.
[11] Xiaojuan Wang, Zhenzhen Liu, Qi Chen, Xiaoqiang Wang, Fang Huang. Interactions between Graphene Materials and Proteins [J]. Progress in Chemistry, 2019, 31(2/3): 236-244.
[12] Yao-Hua Liu, Yu Liu. Photo-Controlled Supramolecular Assemblies Based on Azo Group [J]. Progress in Chemistry, 2019, 31(11): 1528-1539.
[13] Zi-Yue Xu, Yun-Chang Zhang, Jia-Le Lin, Hui Wang, Dan-Wei Zhang, Zhan-Ting Li. Supramolecular Self-Assembly Applied for the Design of Drug Delivery Systems [J]. Progress in Chemistry, 2019, 31(11): 1540-1549.
[14] Lianxun Gao, Chuanqing Kang*, Lianxun Gao. Anion-Naphthalenediimide Interactions and Their Applications [J]. Progress in Chemistry, 2018, 30(7): 902-912.
[15] Guangyan Qing, Zhonghui Chen, Guangyan Qing*. Interfacial Interaction on Phospholipid Membrane [J]. Progress in Chemistry, 2018, 30(7): 888-901.