中文
Announcement
More
Progress in Chemistry 2010, Vol. 22 Issue (11): 2199-2206 Previous Articles   Next Articles

• Review •

Quantification of Proteins by Use of ICP-MS

Zheng Lingna1,2  Wang Meng2**   Wang Huajian Li JianjunFeng Weiyue2   Chai Zhifang2   

  1. (1. Department of Chemistry, Zhengzhou University, Zhengzhou 450001,China; 2. Key Laboratory of Nuclear Analytical Techniques and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049,China)
  • Received: Revised: Online: Published:
  • Contact: Wang meng E-mail:wangmeng@ihep.ac.cn
PDF ( 985 ) Cited
Export

EndNote

Ris

BibTeX

Proteomics has become one of the most active fields in life sciences. The study of biological functions of proteins not only relies on high-throughput identification of proteins, but also on quantitative analysis of the dynamic proteins that is termed quantitative proteomics. Quantitative proteomics is anticipated to provide new insights into biological functions, facilitate the identification of prognostic disease markers and contribute to discovery of proteins as therapeutic targets. The available methods for quantitative proteomics are mainly based on the isotope tagging combined with biological mass spectrometry (such as Electrospray Ionization Mass Spectrometry, ESI-MS, and Matrix Assisted Laser Desorption Ionization Mass Spectrometry, MALDI-MS). Recently inductivity coupled plasma-mass spectrometry (ICP-MS), as an attractive complement to ESI-MS and MALDI-MS, has played an increasing role in protein quantification, especially in absolute protein quantification. ICP-MS is an ideal instrument for determination of trace elements in biomolecules because of its unique advantages, such as high sensitivity, wide dynamic range, and minimal matrix effects. This review will selectively discuss the recent advances of ICP-MS based techniques and their applications in protein quantification and immunoassay.

Contents 
1 Introduction
2 Problems of protein quantification 
3 Available methods for protein quantification 
4 The advantages of ICP-MS in proteins quantification 
5 ICP-MS-based methods for protein quantification
5.1 Protein quantification based on element labeling and ICP-MS detection
5.2 ICP-MS-based Immunoassay
6 Conclusions and outlook

[1] Wilkins M R, Pasquali C, Appel R D, Ou K, Golaz O, Sanchez J C, Yan J X, Gooley A A, Hughes G, HumpherySmith I, Williams K L, Hochstrasser D F. Bio-Technol., 1996, 14: 61—65
[2] Pandey A, Mann M. Nature, 2000, 405: 837—846
[3] Ong S E, Mann M. Nat. Chem. Biol., 2005, 1: 252—262
[4] Tyers M, Mann M. Nature, 2003, 422: 193—197
[5] Bettmer J, Bayon M M, Encinar J R, Sanchez M L F, de la Campa M D F, Medel A S. Journal of Proteomics, 2009, 72: 989—1005
[6] Pan S, Zhang H, Rush J, Eng J, Zhang N, Patterson D, Comb M J, Aebersold R. Mol. Cell. Proteomics, 2005, 4: 182—190
[7] Koellensperger G, Groeger M, Zinkl D, Petzelbauer P, Hann S. J. Anal. At. Spectrom., 2009, 24: 97—102
[8] Lambert J P, Ethier M, Smith J C, Figeys D. Anal. Chem., 2005, 77: 3771—3787
[9] Aebersold R, Mann M. Nature, 2003, 422: 198—207
[10] Aebersold R, Goodlett D R. Chem. Rev., 2001, 101: 269—295
[11] Domon B, Aebersold R. Science, 2006, 312: 212—217
[12] Ong S E, Blagoev B, Kratchmarova I, Kristensen D B, Steen H, Pandey A, Mann M. Mol. Cell. Proteomics, 2002, 1: 376—386
[13] Mirgorodskaya O A, Kozmin Y P, Titov M I, Korner R, Sonksen C P, Roepstorff P. Rapid Commun. Mass Spectrom., 2000, 14: 1226—1232
[14] Gygi S P, Rist B, Gerber S A, Turecek F, Gelb M H, Aebersold R. Nat. Biotechnol., 1999, 17: 994 — 999
[15] Ross P L, Huang Y L N, Marchese J N, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin D. J. Mol. Cell. Proteomics, 2004, 3: 1154—1169
[16] Jakubowski N, Lobinski R, Moens L. J. Anal. At. Spectrom., 19: 1— 4
[17] Wind M, Lehmann W D. J. Anal. At. Spectrom., 2004, 19: 20—25
[18] Szpunar J, Lobinski R. Anal. Bioanal. Chem., 2002, 373: 404 — 411
[19] Wang M, Feng W Y, Zhao Y L, Chai Z F. Mass Spectrom. Rev., 2010, 29: 326—348
[20] Lobinski R, Schaumlffel D, Szpunar J. Mass Spectrom. Rev., 2006, 25: 255—289
[21] Svantesson E, Pettersson J, Markides K E. J. Anal. At. Spectrom., 2002, 17: 491—496
[22] Prange A, Proefrock D. J. Anal. At. Spectrom., 2008, 23: 432—459
[23] Schaumloffel D, Lobinski R. Int. J. Mass Spectrom., 2005, 242: 217—223
[24] Wang M, Feng W Y, Wang H J, Zhang Y, Li J, Li B, Zhao Y L, Chai Z F. J. Anal. At. Spectrom., 2008, 23: 1112—1116
[25] Wang M, Feng W Y, Lu W, Li B, Wang B, Zhu M T, Wang Y, Yuan H, Zhao Y L, Chai Z F. Anal. Chem., 2007, 79: 9128—9134
[26] Kutscher D J, Busto M E D, Zinn N, Sanz-Medel A, Bettmer J. J. Anal. At. Spectrom., 2008, 23: 1359—1364
[27] Kutscher D J, Bettmer J. Anal. Chem., 2009, 81: 9172—9177
[28] Guo Y F, Xu M, Yang L M, Wang Q Q. J. Anal. At. Spectrom., 2009, 24: 1184—1187
[29] Jakubowski N, Messerschmidt J, Anorbe M G, Waentig L, Hayen H, Roos P H. J. Anal. At. Spectrom., 2008, 23: 1487—1496
[30] Pereira N A, Encinar J R, Ballesteros A, González J M, Sanz-Medel A. Anal. Chem., 2009, 81: 5390—5399
[31] Becker J S, Jakubowski N. Chem. Soc. Rev., 2009, 38: 1969—1983
[32] Whetstone P A, Butlin N G, Corneillie T M, Meares C F. Bioconjugate Chem., 2004, 15: 3—6
[33] Liu H L, Zhang Y J, Wang J L, Wang D, Zhou C X, Cai Y, Qian X H. Anal. Chem., 2006, 78: 6614—6621
[34] Jakubowski N, Waentig L, Hayen H, Venkatachalam A, von Bohlen A, Roos P H, Manz A. J. Anal. At. Spectrom., 2008, 23: 1497—1507
[35] Yan X, Xu M, Yang L, Wang Q Q. Anal. Chem., 2010, 82: 1261—1269
[36] Rappel C, Schaumlffel D. Anal. Chem., 2008, 81: 385—393
[37] Baranov V I, Quinn Z, Bandura D R, Tanner S D. Anal. Chem., 2002, 74: 1629—1636
[38] Zhang C, Wu F B, Zhang Y Y, Wang X, Zhang X R. J. Anal. At. Spectrom., 2001, 16: 1393—1396
[39] Terenghi M, Elviri L, Careri M, Mangia A, Lobinski R. Anal. Chem., 2009, 81: 9440—9448
[40] Ornatsky O, Baranov V, Bandura D R, Tanner S D, Dick J. J. Immunol. Methods, 2006, 308: 68—76
[41] Ornatsky O I, Baranov V, Bandura D, Tanner S D, Dick J. Faseb J., 2006, 20: A100—A100
[42] Hu S H, Zhang S C, Hu Z C, Xing Z, Zhang X R. Anal. Chem., 2007, 79: 923—929
[43] Zhang C, Zhang Z Y, Yu B B, Shi J J, Zhang X R. Anal. Chem., 2002, 74: 96—99
[44] Baranov V I, Quinn Z A, Bandura D R, Tanner S D. J. Anal. At. Spectrom., 2002, 17: 1148—1152
[45] Hu S H, Liu R, Zhang S C, Huang Z, Xing Z, Zhang X R. J. Am. Soc. Mass Spectrom., 2009, 20: 1096—1103
[46] Lou X D, Zhang G H, Herrera I, Kinach R, Ornatsky O, Baranov V, Nitz M, Winnik M A. Angew. Chem. Int. Ed., 2007, 46: 6111—6114
[47] Tanner S D, Ornatsky O, Bandura D R, Baranov V I. Spectroc. Acta Pt. B-Atom. Spectr., 2007, 62: 188—195
[48] Zhao Q, Lu X F, Yuan C G, Li X F, Le X C. Anal. Chem., 2009, 81: 7484—7489
[49] Patel P, Jones P, Handy R, Harrington C, Marshall P, Evans E H. Anal. Bioanal. Chem., 2008, 390: 61—65
[50] Ahrends R, Pieper S, Kuhn A, Weisshoff H, Hamester M, Lindemann T, Scheler C, Lehmann K, Taubner K, Linscheid M W. Mol. Cell. Proteomics, 2007, 6: 1907—1916
[51] Ahrends R, Pieper S, Neumann B, Scheler C, Linscheid M W. Anal. Chem., 2009, 81: 2176—2184
[52] Ahlgren S, Orlova A, Rosik D, Sandstrom M, Sjoberg A, Basstrup B, Widmark O, Fant G,Feldwisch J, Tolmachev V. Bioconjugate Chem., 2008, 19: 235—243
[53] Zhang C, Wu F B, Zhang X R. J. Anal. At. Spectrom., 2002, 17: 1304—1307
[54] Zhang S C, Zhang C, Xing Z, Zhang X R. Clin. Chem., 2004, 50: 1214—1221
[55] Hutchinson R W, Cox A G, McLeod C W, Marshall P S, Harper A, Dawson E L, Howlett D R. Anal. Biochem., 2005, 346: 225—233
[56] Ornatsky O I, Kinach R, Bandura D R, Lou X, Tanner S D, Baranov V I, Nitz M, Winnik M A. J. Anal. At. Spectrom., 2008, 23: 463—469
[57] Jakubowski N, Messerschmidt J, Aňorbe M G, Waentig L, Hayen H, Roos P H. J. Anal. At. Spectrom., 2008, 23: 1487—1496
[58] Seuma J, Bunch J, Cox A, McLeod C, Bell J, Murray C. Proteomics, 2008, 8: 3775—3784
[59] 米薇 (Mi W), 王晶 (Wang J). 生物化学与生物物理进展 (Progress in Biochemistry and Biophysics), 2010, (02): 224—229

[1] Peng Gang, Liu Bailing, Wang Bin, Li Chenying. Scintillation Proximity Assays in High Throughput Screening [J]. Progress in Chemistry, 2012, 24(08): 1572-1582.
[2] Peng Xiaomin, Zhang Jinchao, Gao Yuxi, Chai Zhifang. Techniques for Extraction and Separation of Metalloproteins [J]. Progress in Chemistry, 2012, 24(05): 834-843.
[3] Lv Chunhui, Wang Shuo, Fang Guozhen, Tang Yiwei, Wang Suilou. Molecularly Imprinted Polymers as Antibody Alternatives in Sorbent Immunoassays [J]. Progress in Chemistry, 2012, 24(05): 844-851.
[4] Liu Tao, Sun Lining, Liu Zheng, Qiu Yannan, Shi Liyi. Rare-Earth Upconversion Nanophosphors [J]. Progress in Chemistry, 2012, 24(0203): 304-317.
[5] . Microfluidic Chip-Based Immunoassay [J]. Progress in Chemistry, 2009, 21(04): 687-695.
[6] Xu Yi1,2**,Lv Junjiang1,Fan Wei1,Wen Zhiyu2. Progress of Biochemical Reaction Technologies on Microfluidic Chips [J]. Progress in Chemistry, 2007, 19(05): 820-832.
[7] Yan Feng1 Ju Huangxian2**.

Novel Concepts and Approach of Immunoassay and Cellular Analysis

[J]. Progress in Chemistry, 2007, 19(012): 1852-1860.
[8] Juan Kang,Xinxiang Zhang**. Fluorescent Nanoparticle Labeled Immunoassay [J]. Progress in Chemistry, 2006, 18(11): 1523-1529.
[9] Jieli Deng,Caixin Guo,Wensheng Lu,Tao Liu,Long Jiang**. Polydiacetylene Vesicle —— A Device Based On Molecular Assembly for Biological Molecular Recognition [J]. Progress in Chemistry, 2006, 18(11): 1397-1408.
[10] Wang Likai,Feng Xizeng**. Microfluidic Network for Research and Application in Life Sciences [J]. Progress in Chemistry, 2005, 17(03): 482-498.
[11] Mi Jianqiu,Zhang Xinxiang**,Chang Wenbao. Capillary Electrophoesis Immunoassay [J]. Progress in Chemistry, 2003, 15(01): 31-.
[12]

Yang Xiaoda, Chang Wenbao, Ci Yunxiang

. Immunoassay: A Comprehensive Review and Prospect [J]. Progress in Chemistry, 1995, 7(02): 83-.