中文
Announcement
More
Progress in Chemistry 2010, Vol. 22 Issue (11): 2179-2190 Previous Articles   Next Articles

• Review •

Application of Quantum Dots Based Electrochemical Biosensors

Liu Jianyun   Huang Qianming**   Wang Xianxiang**   Li Zhen   Chen Huaping   

  1. (College of Life and Science,Sichuan Agricultural University, Ya’an 625014,China)
  • Received: Revised: Online: Published:
  • Contact: Huang Qianming E-mail:hqming@sicau.edu.cn
PDF ( 1573 ) Cited
Export

EndNote

Ris

BibTeX

Quantum dots(QDs) have attracted enormous interest due to their many novel properties such as unique optical, electrochemical and electrochemical luminescence properties. One of the most active trends is the application of QDs in electrochemical and biological sensing, due to their high surface-to-volume ratio, high reactivity and small size. Slight changes in the external environment will lead to significant changes in particle valence and electron transfer. Based on these significant changes, QDs can be used to construct electrochemical biosensor with biological macromolecules, which is characterized by high sensitivity, rapid response and high selectivity. In this article, we review their applications in electrochemical luminescence sensors, immunosensors, DNA sensors, protein sensors, pesticide sensors and carbohydrate sensors. Meanwhile, the prospects and research directions of QDs are given based on the analysis of this research field.

Contents
1 Introduction
2 Quantum dots
2.1 Optical properties of quantum dots
2.2 Electrochemical properties of quantum dots
2.3 Electrochemical luminescence properties of quantum dots
3 Applications of quantum dots based electrochemical biosensors
3.1 Applications of quantum dots based electrochemical luminescence sensors
3.2 Applications of quantum dots based electrochemical Immunosensor
3.3 Applications of quantum dots based electrochemical DNA sensors
3.4 Applications of quantum dots based electrochemical protein sensors
3.5 Applications of quantum dots based electrochemical pesticide sensors
3.6 Applications of quantum dots based electrochemical carbohydrate sensors
4 Conclusions and outlook

CLC Number: 

[1] Medintz I L, Uyeda H T, Goldman E R, Mattoussi H. Nat. Mater., 2005, 4(6): 435—446
[2] Michalet X, Pinaud F F, Bentolila L A, Tsay J M, Doose S, Li J J, Sundaresan G, Wu A M, Gambhir S S, Weiss S. Science, 2005, 307(5709): 538—544
[3] Bard A J, Ding Z, Myung N. Electrochemistry and Electrogenerated Chemiluminescence of Semiconductor Nanocrystals in Solutions and in Films. Heidelberg: Springer Berlin, 2005, 1—57
[4] Gill R, Zayats M, Willner I. Angew. Chem. Int. Ed., 2008, 47(40): 7602—7625
[5] 刘建云 (Liu J Y), 黄乾明 (Huang Q M), 王显祥 (Wang X X), 杨群峰 (Yang Q F), 陈华萍 (Chen H P). 化学进展 (Progress in Chemistry), 2010, 6: 1068—1076
[6] Guyot-Sionnest P. Microchimica. Acta, 2008, 160(3): 309—314
[7] Franzl T, Shavel A, Rogach A L, Gaponik N, Klar T A, Eychmuller A, Feldmann J. Small, 2005, 1(4): 392—395
[8] Achermann M, Petruska M A, Crooker S A, Klimov V I. J. Phys. Chem. B, 2003, 107: 13782—13787
[9] Kongkanand A, Tvrdy K, Takechi K, Kuno M, Kamat P V. J. Am. Chem. Soc., 2008, 130(12): 4007—4015
[10] Rmachandran S, Merrill N E, Blick R H, Van Der Weide D W. Biosens. Bioelectron., 2005, 20(10): 2173—2176
[11] Buso D, Della Giustina G, Brusatin G, Guglielmi M, Martucci A, Chiasera A, Ferrari M, Romanato F. J. Nanosci. Nanotechnol., 2009, 9(3): 1858—1864
[12] Houtepen A J, Kockmann D, Vanmaekelbergh D. Nano Lett., 2008, 8(10): 3516—3520
[13] Yue Z, Khalid W, Zanella M, Abbasi A, Pfreundt A, Rivera Gil P, Schubert K, Lisdat F, Parak W. Anal. Bioanal. Chem.,2010, 396(3): 1095—1103
[14] Nassiopoulou A G, Olzierski A, Tsoi E, Berbezier I, Karmous A. J. Nanosci. Nanotechnol., 2007, 7(1): 316—321
[15] Poznyak S K, Osipovich N P, Shavel A, Talapin D V, Gao M, Eychmuller A, Gaponik N. J. Phys. Chem. B, 2005, 109(3): 1094—1100
[16] Querner C, Reiss P, Sadki S, Zagorska M, Pron A. Phys. Chem. Chem. Phys., 2005, 7(17): 3204—3209
[17] Sun Q, Subramanyam G, Dai L, Check M, Campbell A, Naik R, Grote J, Wang Y. ACS Nano, 2009, 3(3): 737—743
[18] Medintz I L, Pons T, Trammell S A, Grimes A F, English D S, Blanco-Canosa J B, Dawson P E, Mattoussi H. J. Am. Chem. Soc., 2008, 130(49): 16745—16756
[19] Pradhan S, Chen S, Wang S, Zou J, Kauzlarich S M, Louie A Y. Langmuir, 2006, 22(2): 787—793
[20] De Girolamo J, Reiss P, Zagorska M, De Bettignies R, Bailly S, Mevellec J Y, Lefrant S, Travers J P, Pron A. Phys. Chem. Chem. Phys., 2008, 10(27): 4027—4035
[21] 王显祥 (Wang X X), 杨中科 (Yang Z K), 郭敏 (Guo M), 刘怡 (Liu Y), 黄娟 (Huang J), 单志 (Shan Z), 杨婉身 (Yang W S). 无机化学学报 (Chinese Journal of Inorganic Chemistry), 2009, 25(3): 496—500
[22] 王显祥 (Wang X X), 黄娟 (Huang J), 靳茹文 (Jin R W), 杨中科 (Yang Z K), 单志 (Shan Z), 杨婉身 (Yang W S). 化学学报 (Acta Chimica Sinica), 2009, 67(17): 2025—2030
[23] Sun J, Gao M, Feldmann J. J. Nanosci. Nanotechnol., 2001, 1(2): 133—136
[24] Chen W, Grouquist D, Roark J. J. Nanosci. Nanotechnol., 2002, 2(1): 47—53
[25] Wang P, Abrusci A, Wong H M, Svensson M, Andersson M R, Greenham N C. Nano Lett., 2006, 6(8): 1789—1793
[26] Han H, You Z, Liang J, Sheng Z. Front. Biosci., 2007, 12: 2352—2357
[27] Hua L J, Han H Y, Zhang X H. Talanta, 2009, 77(5): 1654—1659
[28] Liu X, Ju H. Anal. Chem., 2008, 80(14): 5377—5382
[29] Chang P C, Buckley D N, Ahmed S, Shiojima K. State-of-the-Art-Program on Compound Semiconductors (SOTAPOCS XLII) and Processes at the Compound-Semiconductors/Solution Interface. NY:Electrochemical Society, 2005. 129—137
[30] Myung N, Bae Y, Bard A J. Nano Lett., 2003, 3: 1053—1055
[31] Zou G Z, Ju H X. Anal. Chem., 2004, 76(23): 6871—6876
[32] Han H, Sheng Z, Liang J. Anal. Chim. Acta, 2007, 596(1): 73—78
[33] Jiang H, Ju H. Anal. Chem., 2007, 79(17): 6690—6696
[34] Liu X, Jiang H, Lei J, Ju H. Anal. Chem., 2007, 79(21): 8055—8060
[35] Liu X, Cheng L X, Lei J P, Ju H X. Analyst, 2008, 133: 1161—1163
[36] Liu X, Guo L, Cheng L, Ju H. Talanta, 2009, 78(3): 691—694
[37] Cheng L X, Liu X, Lei J P, Ju H X. Anal. Chem., 2010, 82: 3359—3364
[38] Jie G, Huang H, Sun X, Zhu J J. Biosens. Bioelectron., 2008, 23(12): 1896—1899
[39] Jie G, Zhang J, Wang D, Cheng C, Chen H Y, Zhu J J. Anal. Chem., 2008, 80(11): 4033—4039
[40] Jie G, Li L, Chen C, Xuan J, Zhu J J. Biosens. Bioelectron., 2009, 24(11): 3352—3358
[41] Guo L, Liu X, Hu Z, Deng S Y, Ju H X. Electroanalysis, 2009, 21: 2495—2498
[42] Wu H, Liu G, Wang J, Lin Y. Electrochem. Commun., 2007, 9:1573—1577
[43] Liu G, Wang J, Kim J, Jan M R, Collins G E. Anal. Chem., 2004, 76(23): 7126—7130
[44] Yu H W, Lee J, Kim S, Nguyen G H, Kim I S. Anal. Bioanal. Chem., 2009, 394(8): 2173—2181
[45] Wang J, Liu G, Wu H, Lin Y. Small, 2008, 4(1): 82—86
[46] Du D, Ding J, Tao Y, Li H, Chen X. Biosens. Bioelectron., 2008, 24(4): 869—874
[47] Ding C, Zhang Q, Zhang S. Biosens. Bioelectron, 2009, 24(8): 2434—2440
[48] Cui R, Pan H C, Zhu J J, Chen H Y. Anal. Chem, 2007, 79(22): 8494—8501
[49] Liu G, Lin Y Y, Wang J, Wu H, Wai C M, Lin Y. Anal. Chem., 2007, 79(20): 7644—7653
[50] Thurer R, Vigassy T, Hirayama M, Wang J, Bakker E, Pretsch E. Anal. Chem., 2007, 79(13): 5107—5110
[51] Ho J A, Lin Y C, Wang L S, Hwang K C, Chou P T. Anal. Chem., 2009, 81(4): 1340—1346
[52] Wang J, Liu G, Merkoci A. J. Am. Chem. Soc., 2003, 125(11): 3214—3215
[53] Pumera M, Castaneda M T, Pividori M I, Eritja R, Merkoci A, Alegret S. Langmuir, 2005, 21(21): 9625—9629
[54] Brousseau L C. J. Am. Chem. Soc., 2006, 128(35): 11346—11347
[55] Marin S, Merkoci A. Nanotechnology, 2009, 20(5): 055101
[56] Dong H, Yan F, Ji H, Wong Danny K Y, Ju H. Adv. Funct. Mater., 2010, 20: 1—7
[57] Hansen J A, Wang J, Kawde A N, Xiang Y, Gothelf K V, Collins G. J. Am. Chem. Soc., 2006, 128(7): 2228—2229
[58] Wang Z, Wang J H, Xu Q, Yang Q, Zhang X Y, Zhao Y D. Microchimica Acta, 2009, 166(1): 133—138
[59] Wang Z, Xu Q, Wang J H, Yang Q, Yu J H, Zhao Y D. Microchim. Acta, 2009, 165: 387—392
[60] Stoll C, Gehring C, Schubert K, Zanella M, Parak W J, Lisdat F. Biosens. Bioelectron., 2008, 24(2): 260—265
[61] Katz E, Zayats M, Willner I, Lisdat F. Chem. Commun., 2006, (13): 1395—1397
[62] Xu Y, Liang J, Hu C, Wang F, Hu S, He Z. J. Biol. Inorg. Chem., 2007, 12(3): 421—427
[63] Wang Z, Xu Q, Wang H Q, Yin Z H, Yu J H, Zhao Y D. Anal. Sci., 2009, 25(6): 773—777
[64] Cheng W, Yan F, Ding L, Ju H X, Yin Y B. Anal. Chem., 2010, 82(8): 3337—3342
[65] Liu G, Wang J, Barry R, Petersen C, Timchalk C, Gassman P L, Lin Y. Chemistry, 2008, 14(32): 9951—9959
[66] Du D, Chen S, Song D, Li H, Chen X. Biosens. Bioelectron., 2008, 24(3): 475—479
[67] Wang H, Wang J, Timchalk C, Lin Y. Anal. Chem., 2008, 80(22): 8477—8484
[68] Ding L, Cheng W, Wang X, Ding S, Ju H X. J. Am. Chem. Soc., 2008, 130(23): 7224—7225
[69] Han E, Ding L, Lian H Z, Ju H X. Chem. Commun., 2010, DOI: 10.1039/c001331e
[70] Liu Q, Lu X, Li J, Yao X. Biosens. Bioelectron., 2007, 22(12): 3203—3209
[71] Dai Z, Kawde A N, Xiang Y, La Belle J T, Gerlach J, Bhavanandan V P, Joshi L, Wang J. J. Am. Chem. Soc., 2006, 128(31): 10018—10019
[72] Schubert K, Khalid W, Yue Z, Parak W J, Lisdat F. Langmuir, 2010, 26(2): 1395—1400
[73] Carrara S, Boero C, Micheli G. Quantum Dots and Wires to Improve Enzymes-Based Electrochemical Bio-Sensing. (Eds. Schmid A,et al). Berlin: Springer, 2009. 189—199

[1] Huayue Sun, Xianxin Xiang, Tingyi Yan, Lijun Qu, Guangyao Zhang, Xueji Zhang. Wearable Biosensors Based on Smart Fibers and Textiles [J]. Progress in Chemistry, 2022, 34(12): 2604-2618.
[2] Jiaen Xie, Yuheng Luo, Qianling Zhang, Pingyu Zhang. Metal Complexes in Application of Two-Photon Luminescence Probes [J]. Progress in Chemistry, 2021, 33(1): 111-123.
[3] Yangyang Zhou, Jian Zhong, Xiaojun Bian, Gang Liu, Liang Li, Juan Yan. Application of Signal Amplification Technology in the Area of Food Safety Detection [J]. Progress in Chemistry, 2018, 30(2/3): 206-224.
[4] Deng Wangping, Wang Lihua, Song Shiping, Zuo Xiaolei. Biosensors in POCT Application [J]. Progress in Chemistry, 2016, 28(9): 1341-1350.
[5] Cao Ya, Zhu Xiaoli, Zhao Jing, Li Hao, Li Genxi. Electrochemical Analysis of Tumor Marker Proteins [J]. Progress in Chemistry, 2015, 27(1): 1-10.
[6] Song Yingpan, Feng Miao, Zhan Hongbing*. Application of Graphene Edge Effect in Electrochemical Biosensors [J]. Progress in Chemistry, 2013, 25(05): 698-706.
[7] Li Jing, Yang Xiaoying*. Applications of Novel Carbon Nanomaterials——Graphene and Its Derivatives in Biosensing [J]. Progress in Chemistry, 2013, 25(0203): 380-396.
[8] Wen Yanli, Lin Meihua, Pei Hao, Lu Na, Fan Chunhai. Electrochemical-Based MicroRNA Sensors [J]. Progress in Chemistry, 2012, (9): 1656-1664.
[9] Song Yingpan, Feng Miao, Zhan Hongbing. Applications of Graphene Nanocomposites in Electrochemical Biosensors [J]. Progress in Chemistry, 2012, (9): 1665-1673.
[10] Dong Haifeng, Zhang Xueji. DNA Biosensors Based on Functional Nanoprobes [J]. Progress in Chemistry, 2012, 24(11): 2247-2254.
[11] Shi Wentao, Di Jing, Ma Zhanfang. Electrochemical Glucose Biosensors [J]. Progress in Chemistry, 2012, 24(04): 568-576.
[12] Wei Yan, Liu Zhonggang, Gao Chao, Wang Lun, Liu Jinhuai, Huang Xingjiu. Electrochemical Sensors and Biosensors Based on Nanomaterials: A New Approach for Detection of Organic Micropollutants [J]. Progress in Chemistry, 2012, 24(04): 616-627.
[13] . Interactions between Carbon Nanotubes and Biomolecules [J]. Progress in Chemistry, 2010, 22(09): 1767-1775.
[14] . Research Progress of Quantum Dots in Biological Analysis and Biomedical Diagnosis [J]. Progress in Chemistry, 2010, 22(06): 1068-1076.
[15] . Application of Molecular Simulation in Biosensor Development [J]. Progress in Chemistry, 2010, 22(05): 845-851.