中文
Announcement
More
Progress in Chemistry 2010, Vol. 22 Issue (11): 2134-2146 Previous Articles   Next Articles

• Review •

Synthesis of Metal N-Heterocyclic Carbene Complexes

Liu Bo  Zhang Na   Chen  Wanzhi**   

  1. (Department of Chemistry, Zhejiang University, Xixi Campus, Hangzhou 310028, China)
  • Received: Revised: Online: Published:
  • Contact: Chen Wanzhi E-mail:chenwzz@yahoo.com
PDF ( 1489 ) Cited
Export

EndNote

Ris

BibTeX

N-Heterocyclic carbene ligands(NHCs) are playing an increasingly important role in many areas such as organometallic, organic synthetic, pharmaceutical, and polymer chemistry since the discovery of the first N-heterocyclic carbene complexes in 1968 by Öfele and by Wanzlick and the isolation of the first stable free carbene in 1991 by Arduengo III et al. While numerous powerful catalytic systems incorporating NHC ligands have been described, methods of synthesizing them have advanced more slowly. This review describes the recent progress of the methods used in the preparation of N-heterocyclic carbene complexes. According to the nature of the NHC precursor and to the activation method employed, the common routes for preparing NHC–metal complexes are insertion of metal ions into the carbon–carbon double bonds of highly electron-rich alkenes, coordination of preformed, isolated free carbenes, deprotonation of an Imidazolium salt with an external base or with metal complex having a basic ligand, thermal decomposition of corresponding carbene adducts, transmetallation from a silver-NHC complex or from a gold-NHC complex, oxidative addition of the C2-X (X = Me, halogen, H) bond of an imidazolium precursor. In addition, our research group firstly found that Iron, Cobalt, Nickel, and Copper complexes of N-heterocyclic carbenes can be directly synthesized by using commercially available metal powders.

Contents
1 Introduction
2 Synthesis of N-heterocyclic carbene complexes by the cleavage of electron-rich olefins
3 Synthesis of N-heterocyclic carbene complexes from preformed, isolated free carbenes
4 Synthesis of N-heterocyclic carbene complexes by deprotonation of an Imidazolium salt with a base
4.1 Deprotonation with an external base
4.2 Deprotonation with metal complex having a basic ligand
5 Synthesis of N-heterocyclic carbene complexes by thermal decomposition of carbene adducts
5.1 Alcohol adduct of N-heterocyclic carbene
5.2 Triethylborane adduct of N-heterocyclic carbene
5.3 Pentafluorobenzene adduct of N-heterocyclic carbene
5.4 CO2 adduct of N-heterocyclic carbene
5.5 Cyanide adduct of N-heterocyclic carbene
6 Synthesis of N-heterocyclic carbene complexes by transmetallation
6.1 Transmetallation from a silver-NHC complex
6.2 Transmetallation from a gold-NHC complex
7 Synthesis of N-heterocyclic carbene complexes by oxidative addition through activating of the C2-X bond
8 Direct synthesis of N-heterocyclic carbene complex by using metal powders
9 Synthesis of N-heterocyclic carbene complexes by other special methods
9.1 Direct synthesis of N-heterocyclic carbene copper complexes via Cu2O.
9.2 Transmetallation of lithiated heterocycles
9.3 Transmetallation from group VI metal carbonyl carbene complexes
10 Conclusions and Outlook

CLC Number: 

[1] fele K J. Organomet. Chem., 1968, 12: 42—43
[2] Wanzlick H W, Schnherr H J. Angew. Chem. Int. Ed. Engl., 1968, 7: 141—142
[3] Arduengo A J, Harlow R L, Kline M. J. Am. Chem. Soc., 1991, 113: 361—363
[4] Glorius F, Rogers M M, Stahl S S, Díez-González S, Nolan S P, Peris E, Gade L H, Bellemin-Laponnaz S, Tekavec T N, Louie J, Despagnet-Ayoub E, Ritter T. N-Heterocyclic Carbenes in Transition Metal Catalysis. Heidelberg: Springer Berlin, 2007. 83—116
[5] Schuster O, Yang L, Raubenheimer H G, Albrecht M. Chem. Rev., 2009, 109: 3445—3478
[6] Lin J C Y, Huang R T W, Lee C S, Bhattacharyya A, Hwang W S, Lin I J B. Chem. Rev., 2009, 109: 3561—3598
[7] Poyatos M, Mata J A, Peris E. Chem. Rev., 2009, 109: 3677—3707
[8] Samojowicz C, Bieniek M, Grela K. Chem. Rev., 2009, 109: 3708—3742
[9] Hindi K M, Panzner M J, Tessier C A, Cannon C L, Youngs W J. Chem. Rev., 2009, 109: 3859—3884
[10] 李林涛(Li L T), 麻生明(Ma S M). 有机化学(Chin. J. Org. Chem.), 2001, 21: 75—81
[11] 柳清湘(Liu Q X), 李正名(Li Z M). 化学通报(Chemistry), 2004, 10: 715—722
[12] 孙小宇(Sun X Y), 吴劼(Wu J). 有机化学(Chin. J. Org. Chem.), 2006, 26: 745—756
[13] 古丽娜(Gu L N), 祝冠彬(Zhu G B), 宋海斌(Song H B), 自国甫(Zi G F). 有机化学(Chin. J. Org. Chem.), 2009, 29(10): 1499—1507
[14] 姜岚(Jiang L), 李争宁(Li Z N), 赵德峰(Zhao D F). 化学进展(Progress in Chemistry), 2009, 21(6): 1229—1240
[15] Cardin D J, Cetinkay B, Lappert M F, Manojlov L, Muir K W. J. Chem. Soc. D, 1971, 400—401
[16] Wanzlick H W, Schikora E. Angew. Chem. 1960, 72: 494—494
[17] zdemir I, Yigit M, Yigit B, etinkaya B, etinkaya E. J. Coord. Chem. 2007, 60: 2377—2384
[18] Yaar S, Dǒgan , zdemir I, Cetinkaya B. Appl. Organomet. Chem., 2008, 22: 314—318
[19] Varnado C D, Lynch V M, Bielawski C W. Dalton Trans., 2009, 7253—7261
[20] Lappert M F, Pye P L. J. Chem. Soc. Dalton Trans., 1977, 2172—2180
[21] Hitchcock P B, Lappert M F, Pye P L. J. Chem. Soc. Dalton Trans., 1978, 826—836
[22] Lappert M F. J. Organomet. Chem., 1988, 358: 185—213
[23] Arnold P L, Rodden M, Wilson C. Chem. Commun., 2005, 1743—1745
[24] Herrmann W A, Schwarz J, Gardiner M G. Organometallics, 1999, 18: 4082—4089
[25] Weskamp T, Schattenmann W C, Spiegler M, Herrmann W A. Angew. Chem. Int. Ed., 1998, 37: 2490—2493
[26] Danopoulos A A, Winston S, Motherwell W B. Chem. Commun., 2002, 1376—1377
[27] Danopoulos A A, Tulloch A A D, Winston S, Eastham G, Hursthouse M B. Dalton Trans., 2003, 1009—1015
[28] McGuinness D S, Gibson V C, Steed J W. Organometallics, 2004, 23: 6288—6292
[29] Danopoulos A A, Tsoureas N, Wright J A, Light M E. Organometallics, 2004, 23:166—168
[30] McGuinness D S, Gibson V C, Wass D F, Steed J W. J. Am. Chem. Soc., 2003, 125: 12716—12717
[31] Luan X, Mariz R, Gatti M, Costabile C, Poater A, Cavallo L, Linden A, Dorta R. J. Am. Chem. Soc., 2008, 130: 6848—6858
[32] Enders D, Gielen H, Raabe G, Runsink J, Teles J H. Chem. Ber., 1996, 129: 1483—1488
[33] Weskamp T, Bhm V P W, Herrmann W A. J. Organomet. Chem., 1999, 585: 348—352
[34] Liu L, Wang F, Shi M. Organometallics, 2009, 28: 4416—4420
[35] Liu Q X, Yin L N, Wu X M, Feng J C, Guo J H, Song H B. Polyhedron, 2008, 27: 87—94
[36] Enders D, Gielen H. J. Organomet. Chem., 2001, 617/618: 70—80
[37] Albrecht M, Miecznikowski J R, Samuel A, Faller J W, Crabtree R H. Organometallics, 2002, 21: 3596—3604
[38] Kong Y, Ren H, Xu S, Song H, Liu B, Wang B. Organometallics, 2009, 28: 5934—5940
[39] Martin H C, James N H, Aitken J, Gaunt J A, Adams H, Haynes A. Organometallics, 2003, 22: 4451—4458
[40] Bittermann A, Baskakov D, Herrmann W A. Organometallics, 2009, 28: 5107—5111
[41] Herrmann W A, Gerstberger G, Spiegler M. Organometallics, 1997, 16: 2209—2212
[42] Liu Y, Wan X, Xu F. Organometallics, 2009, 28: 5590—5592
[43] Chen C, Qiu H, Chen W, Wang D. J. Organomet. Chem., 2008, 693: 3273—3280
[44] Ye J, Zhang X, Chen W, Shimada S. Organometallics, 2008, 27: 4166—4172
[45] Danopoulos A A, Wright J A, Motherwell W B, Ellwood S. Organometallics, 2004, 23: 4807—4810
[46] Zhang J, Yao H, Zhang Y, Sun H, Shen Q. Organometallics, 2008, 27: 2672—2675
[47] Gründemann S, Kovacevic A, Albrecht M, Faller J W, Crabtree R H. Chem. Commun., 2001, 2274—2275
[48] Gründemann S, Kovacevic A, Albrecht M, Faller J W, Crabtree R H. J. Am. Chem. Soc., 2002, 124: 10473—10481
[49] Chianese A R, Kovacevic A, Zeglis B M, Faller J W, Crabtree R H. Organometallics, 2004, 23: 2461—2468
[50] Xie L, Sun H, Hu D, Liu Z, Shen Q, Zhang Y. Polyhedron, 2009, 28: 2585—2590
[51] Kelly R A, Scott N M, Díez-González S, Stevens E D, Nolan S. Organometallics, 2005, 24: 3442—3447
[52] Enders D, Breuer K, Raabe G, Runsink J, Teles J H, Melder J P, Ebel K, Brode S. Angew. Chem. Int. Ed. Engl., 1995, 34: 1021—1023
[53] Scholl M, Ding S, Lee C W, Grubbs R H. Org. Lett., 1999, 1: 953—956
[54] Trnka T M, Morgan J P, Sanford M S, Wilhelm T E, Scholl M, Choi T L, Ding S, Day M W, Grubbs R H. J. Am. Chem. Soc., 2003, 125: 2546—2558
[55] Yamaguchi Y, Kashiwabara T, Ogata K, Miura Y, Nakamura Y, Kobayashi K, Ito T. Chem. Commun., 2004, 2160—2161
[56] Bittermann A, Hrter P, Herdtweck E, Hoffmann S D, Herrmann W A. J. Organomet. Chem., 2008, 693: 2079—2090
[57] Voutchkova A M, Appelhans L N, Chianese A R, Crabtree R H. J. Am. Chem. Soc., 2005, 127: 17624—17625
[58] Voutchkova A M, Feliz M, Clot E, Eisenstein O, Crabtree R H. J. Am. Chem. Soc., 2007, 129: 12834—12846
[59] Wang H M J, Lin I J B. Organometallics, 1998, 17: 972—975
[60] Wan X, Xu F, Li Q, Song H, Zhang Z. Inorg. Chem. Commun., 2005, 8: 1053—1055
[61] Zhang X, Qiu Y, Rao B, Luo M. Organometallics, 2009, 28: 3093—3099
[62] Xi Z, Zhang X, Chen W, Fu S, Wang D. Organometallics, 2007, 26: 6636—6642
[63] Zhou Y, Xi Z, Chen W, Wang D. Organometallics, 2008, 27: 5911—5920
[64] Gu S, Chen W. Organometallics, 2009, 28: 909—914
[65] Liu A, Zhang X, Chen W. Organometallics, 2009, 28: 4868—4871
[66] Zhang X, Xi Z, Liu A, Chen W. Organometallics, 2008, 27: 4401—4406
[67] Ye J, Chen W, Wang D. Dalton Trans., 2008, 4015—4022
[68] Zhang X, Xia Q, Chen W. Dalton Trans., 2009, 7045—7054
[69] Xi Z, Liu B, Lu C, Chen W. Dalton Trans., 2009, 7008—7014
[70] Mathew P, Neels A, Albrecht M. J. Am. Chem. Soc., 2008, 130: 13534—13535
[71] Liu S, Lee C, Fu C, Chen C, Liu Y, Elsevier C J, Peng S, Chen J. Organometallics, 2009, 28: 6957—6962
[72] Gründemann S, Albrecht M, Kovacevic A, Faller J W, Crabtree R H. J. Chem. Soc. Dalton Trans., 2002: 2163—2167
[73] Duin M A, Clement N D, Cavell K J, Elsevier C J. Chem. Commun., 2003, 400—401
[74] Clement N D, Cavell K J, Jones C, Elsevier C J. Angew. Chem. Int. Ed., 2004, 43: 1277—1279
[75] Bacciu D, Cavell K J, Fallis I A, Ooi L. Angew. Chem. Int. Ed., 2005, 44: 5282—5284
[76] Viciano M, Poyatos M, Sanaú M, Peris E, Rossin A, Ujaque G, Lledós A. Organometallics, 2006, 25: 1120—1134
[77] Mas-Marzá E, Sanaú M, Peris E. Inorg. Chem., 2005, 44: 9961—9967
[78] Liu Z, Zhang T, Shi M. Organometallics, 2008, 27: 2668—2671
[79] Fürstner A, Seidel G, Kremzow D, Lehmann C W. Organometallics, 2003, 22: 907—909
[80] McGuinness D S, Cavell K J, Yates B F, Skelton B W, White A H. J. Am. Chem. Soc., 2001, 123: 8317—8328
[81] Cavell K J, McGuinness D S. Coord. Chem. Rev., 2004, 248: 671—681
[82] Liu B, Xia Q, Chen W. Angew. Chem. Int. Ed., 2009, 48: 5513—5516
[83] Liu B, Liu B, Zhou Y, Chen W. Organometallics, 2010, 29: 1457—1464
[84] Tulloch A A D, Danopoulos A A, Kleinhenz S, Light M E, Hursthouse M B, Eastham G. Organometallics, 2001, 20: 2027—2031
[85] Raubenheimer H G, Cronje S. J. Organomet. Chem., 2001, 617: 170—181
[86] Fischer E O, Beck H J. Angew. Chem. Int. Ed. Engl., 1970, 9: 72—73
[87] Liu S, Hsieh T, Lee G, Peng S. Organometallics, 1998, 17: 993—995
[88] Ku R, Huang J, Cho J, Kiang F, Reddy K R, Chen Y, Lee K, Lee J, Lee G, Peng S, Liu S. Organometallics, 1999, 18: 2145—2154
[89] Chang Y, Fu C, Liu Y, Peng S, Chen J, Liu S. Dalton Trans., 2009, 861—867
[90] Fu C, Chang Y, Liu Y, Peng S, Elsevier C J, Chen J, Liu S. Dalton Trans., 2009, 6991—6998

[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[3] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[4] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[5] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[6] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[7] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[8] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[9] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[10] Fangyuan Li, Junhao Li, Yujie Wu, Kaixiang Shi, Quanbing Liu, Hongjie Peng. Design and Preparation of Electrode Nanomaterials with “Yolk-Shell”Structure for Lithium/Sodium-Ion/Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2022, 34(6): 1369-1383.
[11] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[12] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[13] Xiaoqiong Feng, Yunlong Ma, Hong Ning, Shiying Zhang, Changsheng An, Jinfeng Li. Transition Metal Chalcogenide Cathode Materials Applied in Aluminum-Ion Batteries [J]. Progress in Chemistry, 2022, 34(2): 319-327.
[14] Yaqi Wang, Qiang Wu, Junling Chen, Feng Liang. Diels-Alder Reaction Catalyst [J]. Progress in Chemistry, 2022, 34(2): 474-486.
[15] Wei Zhang, Kang Xie, Yunhao Tang, Chuan Qin, Shan Cheng, Ying Ma. Application of Transition Metal Based MOF Materials in Selective Catalytic Reduction of Nitrogen Oxides [J]. Progress in Chemistry, 2022, 34(12): 2638-2650.