中文
Announcement
More
Progress in Chemistry 2010, Vol. 22 Issue (11): 2119-2125 Previous Articles   Next Articles

• Review •

Preparation and Application of Co3O4 Nanostructures with Various Morphologies

Li Yanhua1,2  Huang Kelong1**  Zeng Dongming1  Liu Suqin1   

  1. (1.College of Chemistry and Chemical Engineering,Central South University,Changsha 410083,China;2.Department of Chemical Engineering and Environmrntal Protection,Changsha Aeronautical Vocational and Technical College,Changsha 410014,China)
  • Received: Revised: Online: Published:
  • Contact: Huang Kelong E-mail:klhuang@mail.csu.edu.cn
PDF ( 1456 ) Cited
Export

EndNote

Ris

BibTeX

This review presents current research activities concerning preparation and application of Co3O4 nanoparticles with various morphologies. The Co3O4 nanostructures are synthesized with various methodes, including thermal deposition, hydrothermal method, solvothermal method, chemical spray pyrolysis, chemical vapor deposition, and sol–gel methods. These methods result in various morphologies such as nanospheres, nanocubes, nanotubes, nanorods, nanaoplates nanofibers, and mesoporous structures. As an important magnetic p-type semiconductor, Co3O4 is often used in the fields of lithium batteries, supercapacitors, electrochromic devices, magnetic materials, gas sensors, and catalysts.

Contents
1 Introduction
2 Preparation of Co3O4 nanostructures
2.1 Thermal deposition
2.2 Hydrothermal method
2.3 Solvothermal method
2.4 Sol–gel method
3 Application of Co3O4 nanostructures
3.1 Lithium batteries
3.2 Supercapacitors
3.3 Magnetic materials
3.4 Electrochromic devices
3.5 Gas sensors
3.6 Catalysts
4 Conclusions and Outlook

CLC Number: 

[1] Liu Y, Mi C H, Su L H, Zhang X G. Electrochim. Acta, 2008, 53: 2507—2513
[2] Zhang H, Wu J B, Zhai C X, Ma X Y, Du N, Tu J P, Yang D R. Nanotechnology, 2008, 19: art. no. 035711
[3] Shaju K M, Jiao F, Debart A, Bruce P G. Phys. Chem. Chem. Phys., 2007, 9: 1837—1842
[4] Gao Y Y, Chen S L, Cao D X, Wang G L, Yin J L. J. Power Sources, 2010, 195: 1757—1760
[5] Cui L, Li J, Zhang X G. J. Appl. Electrochem., 2009, 39: 1871—1876
[6] Zheng M B, Cao J, Liao S T, Liu J S, Chen H Q, Zhao Y, Dai W J, Ji G B, Cao J M, Tao J. J. Phys. Chem. C, 2009, 113: 3887—3894
[7] Lin C, Ritter J A, Popov B N. J. Electrochem. Soc., 1998, 145: 4097—4103
[8] Xia X H, Tu J P, Zhang J, Huang X H, Wang X L, Zhang W K, Huang H. Electrochem. Commun., 2008, 10: 1815—1818
[9] Shim H S, Shinde V R, Kim H J, Sung Y E, Kim W B. Thin Solid Films, 2008, 516: 8573—8578
[10] Zhang Y, Chen Y, Wang T, Zhou J, Zhao Y. Microporous Mesoporous Mater., 2008, 114: 257—261
[11] Shen X P, Miao H J, Zhao H, Xu Z. Appl. Phys. A, 2008, 91: 47—51
[12] Benitez M J, Petracic O, Salabas E L, Radu F, Tuysuz H, Schuth F, Zabel H. Phys. Rev. Lett., 2008, 101: art. no. 097206
[13] Geng B Y, Zhan F M, Fang C H, Yu N. J. Mater. Chem., 2008, 18: 4977—4984
[14] Cao A M, Hu J S, Liang H P, Song W G, Wan L J, He X L, Gao X G, Xia S H. J. Phys. Chem. B, 2006, 110: 15858—15863
[15] Tüysüz H, Comotti M, Schüth F. Chem. Commun., 2008, 4022—4024
[16] Chen Y C, Hu L, Wang M, Min Y L, Zhang Y G. Colloids Surf. A, 2009, 336: 64—68
[17] Xie X, Li Y, Liu Z Q, Haruta M, Shen W. Nature, 2009, 458: 746—749
[18] He T, Chen D, Jiao X. Chem. Mater., 2004, 16: 737—743
[19] Shi X, Han S, Sanedrin R J, Galvez C, Ho D G, Hernandez B, Zhou F, Selke M. Nano Lett., 2002, 2: 289—293
[20] Liang H Y, Raitano J M, Zhang L H, Chan S W. Chem. Commun., 2009, 7569—7571
[21] Teng F, Yao W, Zheng Y, Ma Y, Xu T, Gao G, Liang S, Teng Y, Zhu Y. Talanta, 2008, 76: 1058—1064
[22] Shu P, Ruan J F, Gao C B, Li H C, Che S N. Microporous Mesoporous Mater., 2009, 123: 314—323
[23] Rumplecker A, Kleitz F, Salabas E L, Schüth F. Chem. Mater., 2007, 19: 485—496
[24] 张卫民(Zhang W M), 张玉(Zhang Y), 董光明(Dong G M), 孙中溪(Sun Z X). 高等学校化学学报(Chemical Journal of Chinese Universities), 2006, 27: 1791—1794
[25] 张卫民(Zhang W M), 孙思修(Sun S X), 俞海云(Yu H Y), 宋新宇(Song X Y). 高等学校化学学报(Chemical Journal of Chinese Universities), 2003, 24: 2151—2154
[26] 刘冬梅(Liu D L), 赵海军(Zhao H J), 曹洁明(Cao J M), 郑明波(Zheng M B), 刘劲松(Liu J S). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2008, 24: 636—640
[27] Guan X F, Li G S, Zhou L H, Li L P, Qiu X Q. Chem. Lett., 2009, 38: 280—281
[28] Xu R, Wang J W, Li Q Y, Sun G Y, Wang E B, Li S H, Gu J M, Ju M L. J. Solid State Chem., 2009, 182: 3177—3182
[29] Ahmed J, Ahmad T, Ramanujachary K V, Lofland S E, Ganguli A K. J. Colloid Interface Sci., 2008, 321: 434—441
[30] Xiong S L, Yuan C Z, Zhang M F, Xi B J, Qian Y T. Chem. Eur. J., 2009, 15: 5320—5326
[31] 刘先红(Liu X H), 李德炳(Li D B), 范文青(Fan W Q), 张庆红(Zhang Q H), 王野(Wang Y), 万惠霖(Wan H L). 厦门大学学报(Journal of Xiamen University), 2009, 48: 773—779
[32] Li L L, Chu Y, Liu Y, Song J L, Wang D, Du X W. Mater. Lett., 2008, 62: 1507—1510
[33] Liu X, Qiu G, Li X. Nanotechnology, 2005, 16: 3035—3040
[34] Sun L, Li H, Ren L, Hu C. Solid State Sciences, 2009, 11: 108—112
[35] Zhuo L H, Ge J C, Cao L H, Tang B. Cryst. Growth Des., 2009, 9: 1—6
[36] vegl F, Orel B, Grabec-vegl I, Kau i V. Electrochim. Acta, 2000, 45: 4359—4371
[37] Guan H, Shao C, Wen S, Chen B, Gong J, Yang X. Mater. Chem. Phys., 2003, 82: 1002—1006
[38] Gu Y, Jian F, Wang X. Thin Solid Films, 2008, 517: 652—655
[39] Thota S, Kumar A, Kumar J. Mater. Sci. Eng. B, 2009, 164: 30—37
[40] Li Y G, Tan B, Wu Y Y. Nano Lett., 2008, 8: 265—270
[41] Lou X W, Deng D, Lee J Y, Archer L A. J. Mater. Chem., 2008, 18: 4397—4401
[42] Du N, Zhang H, Chen B, Wu J B, Ma X Y, Liu Z H, Zhang Y Q, Yang D, Huang X H, Tu J P. Adv. Mater., 2007, 19: 4505—4509
[43] Wang G, Shen X, Yao J, Wexler D, Ahn J H. Electrochem. Commun., 2009, 11: 546—549
[44] Li W Y, Xu L N, Chen J. Adv. Funct. Mater., 2005, 15: 851—857
[45] Wang Y, Fu Z W, Qin Q Z. Thin Solid Films, 2003, 441: 19—24
[46] Chou S L, Wang J Z, Liu H K, Dou S X. J. Power Sources, 2008, 182: 359—364
[47] 叶向果(Ye X G), 张校刚(Zhang X G), 米红宇(Mi H Y), 杨苏东(Yang S D). 物理化学学报(Acta Chimica Sinica), 2008, 24: 1105—1110
[48] 黄可龙(Huang K L), 曾雯雯(Zeng W W), 杨幼平(Yang Y P), 刘素琴(Liu S Q), 刘人生(Li R S). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2007, 23: 1555—1560
[49] 郑明波(Zheng M B), 凌宗欣(Ling Z X), 廖书田(Liao S T), 杨振江(Yang Z J), 姬广斌(Ji G B), 曹洁明(Cao J M), 陶杰(Tao J). 化学学报(Acta Chimica Sinica), 2009, 67: 1069—1074
[50] Cao L, Lu M, Li H L. J. Electrochem. Soc., 2005, 152: A871—A875
[51] 曹林(Cao L), 周盈科(Zhou Y K), 陆梅(Lu M), 力虎林(Li H L). 科学通报(Chinese Science Bulletin), 2003, 24: 668—670
[52] 吴雯(Wu W), 王永刚(Wang Y G), 李峰(Li F), 夏永姚(Xia Y Y). 化学学报(Acta Chimica Sinica), 2009, 67: 208—212
[53] Shinde V R, Mahadik S B, Gujar T P, Lokhande C D. Appl. Surf. Sci., 2006, 252: 7487—7492
[54] Ahn H J, Seong T Y. J. Alloys Compd., 2009, 478: L8—L11

[1] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[2] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[3] Xiaozhu Zhao, Wen Li, Xuerui Zhao, Naipu He, Chao Li, Xuehui Zhang. Controlled Growth of MOFs in Emulsion [J]. Progress in Chemistry, 2023, 35(1): 157-167.
[4] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[5] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[6] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[7] Zhao Xiaoxi, Wang Cong, Tian Yong, Wang Xiufang. Preparation of Mesoporous Carbon Materials via Emulsion Method [J]. Progress in Chemistry, 2022, 34(10): 2316-2328.
[8] Xiangkang Cao, Xiaoguang Sun, Guangyi Cai, Zehua Dong. Durable Superhydrophobic Surfaces: Theoretical Models, Preparation Strategies, and Evaluation Methods [J]. Progress in Chemistry, 2021, 33(9): 1525-1537.
[9] Zhen Zhang, Shuang Zhao, Guobing Chen, Kunfeng Li, Zhifang Fei, Zichun Yang. Preparation and Applications of Silicon Carbide Monolithic Aerogels [J]. Progress in Chemistry, 2021, 33(9): 1511-1524.
[10] Yang Chen, Xiaoli Cui. Titanium Dioxide Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1249-1269.
[11] Jinzhao Li, Zheng Li, Xupin Zhuang, Jixian Gong, Qiujin Li, Jianfei Zhang. Preparation of Cellulose Nanocrystallines and Their Applications in CompositeMaterials [J]. Progress in Chemistry, 2021, 33(8): 1293-1310.
[12] Lizhong Chen, Qiaobin Gong, Zhe Chen. Preparation and Application of Ultra-Thin Two Dimensional MOF Nanomaterials [J]. Progress in Chemistry, 2021, 33(8): 1280-1292.
[13] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[14] Xiangchun Tang, Jiaxiang Chen, Lina Liu, Shijun Liao. Pt-Based Electrocatalysts with Special Three-Dimensional Morphology or Nanostructure [J]. Progress in Chemistry, 2021, 33(7): 1238-1248.
[15] Ying Yang, Shupeng Ma, Yuan Luo, Feiyu Lin, Liu Zhu, Xueyi Guo. Multidimensional CsPbX3 Inorganic Perovskite Materials: Synthesis and Solar Cells Application [J]. Progress in Chemistry, 2021, 33(5): 779-801.