中文
Announcement
More
Progress in Chemistry 2010, Vol. 22 Issue (11): 2106-2118 Previous Articles   Next Articles

• Review •

Graphene-based Inorganic Nanocomposites

Bai Song  Shen Xiaoping**   

  1. (School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212003, China)
  • Received: Revised: Online: Published:
  • Contact: Shen Xiaoping E-mail:xiaopingshen@163.com
PDF ( 2550 ) Cited
Export

EndNote

Ris

BibTeX

In past few years, we have witnessed the discovery and synthesis of graphene — a kind of ideal two-dimensional flat carbon nanomaterials. Owing to its novel and unique physical and chemical properties, graphene has been attracting more and more attention from scientific community and nowadays has become a sparkling rising star on the horizon of nanomaterials science. The graphene-based inorganic nanocomposites, derived from the decoration of graphene sheets with inorganic nanoparticles, are emerging as a new class of exciting materials that hold promise for many applications. So far, numerous inorganic nanocomposites based on graphene have been successfully synthesized and show desirable combinations of these properties that are not found in the individual components. Herein, we briefly introduce the structure, properties and preparation methods of graphene, and then highlight the advance in the synthesis of inorganic nanomaterials/graphene composites, especially focusing on the metal/graphene and semiconductor/graphene nanocomposites. The potential applications of these nanocomposites are also discussed. These results underscore the exciting opportunities of developing next-generation graphene-based inorganic nanocomposites.

Contents
1 Introduction
2 Preparation of graphene
3 Metal/graphene nanocomposites
3.1 Composites of graphene sheets and platinum metals
3.2 Composites of graphene sheets and silver
3.3 Composites of graphene sheets and gold
3.4 Composites of graphene sheets and other metal
4 Semiconductor/graphene nanocomposites
4.1 Composites of graphene sheets and titanium dioxide
4.2 Composites of graphene sheets and cobalt oxide
4.3 Composites of graphene sheets and tin oxide
4.4 Composites of graphene sheets and zinc oxide
4.5 Composites of graphene sheets and sulfide semiconductor
4.6 Composites of graphene sheets and other semiconductor
5 Graphene/ceramic nanocomposites
6 Graphene-based magnetic nanocomposites
7 Carbon/graphene nanocomposites
8 Conclusions and outlook

CLC Number: 

[1] Geim A K, Novoselov K S. Nat. Mater., 2007, 6: 183—191
[2] Van Noorden R. Nature, 2006, 442: 228—229
[3] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306: 666—669
[4] Jiao L Y, Zhang L, Wang X R, Diankov G, Dai H J. Nature, 2009, 458: 877—880
[5] Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K, Tour J M. Nature, 2009, 458: 872—877
[6] Wang S, Tang L A L, Bao Q L, Lin M, Deng S, Goh B M, Loh K P. J. Am. Chem. Soc., 2009, 131: 16832—16837
[7] Lee C G, Wei X D, Kysar J W, Hone J. Science, 2008, 321: 385—388
[8] Stoller M D, Park S J, Zhu Y W, An J H, Ruoff R S. Nano Lett., 2008, 8: 3498—3502
[9] Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N. Nano Lett., 2008, 8: 902—907
[10] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L. Solid State Commun., 2008, 146: 351—355
[11] Zhang Y B, Tan Y W, Stormer H L, Kim P. Nature, 2005, 438: 201—204
[12] Novoselov K S, McCann E, Morozov S V, Falko V I, Katsnelson M I, Zeitler U, Jiang D, Schedin F, Geim A K. Nat. Phys., 2006, 2: 177—180
[13] Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K. Science, 2007, 315: 1379—1379
[14] Katsnelson M I, Novoselov K S, Geim A K. Nat. Phys., 2006, 2: 620—625
[15] Heersche H B, Jarillo-Herrero P, Oostinga J B, Vandersypen L M K, Morpurgo A F. Nature, 2007, 446: 56—59
[16] Wang G X, Shen X P, Yao J, Park J. Carbon, 2009, 47: 2049—2053
[17] 徐秀娟(Xu X J), 秦金贵(Qin J G), 李振(Li Z). 化学进展(Progress in Chemistry), 2009, 21(12): 2559—2567
[18] 傅强(Fu Q), 包信和(Bao X H). 科学通报(Chinese Science Bulletin), 2009, 54(18): 2657―2666
[19] 黄毅(Huang Y), 陈永胜(Chen Y S). 中国科学B辑(Science in China, Series B), 2009, 39(9): 887—896
[20] 杨全红(Yang Q H), 吕伟(Lv W), 杨永岗(Yang Y G), 王茂章(Wang M Z). 新型炭材料(New Carbon Materials), 2008, 23(2): 97—103
[21] 李旭(Li X), 赵卫峰(Zhao W F), 陈国华(Chen G H). 材料导报(Materials Review), 2008, 22(8): 48—52
[22] Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S. Nature, 2006, 442: 282—286
[23] Berger C, Song Z M, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T B, Hass J, Marchenkov A N, Conrad E H, First P N, de Heer W A. Science, 2006, 312: 1191—1196
[24] Berger C, Song Z M, Li T B, Li X B, Ogbazghi A Y, Feng R, Dai Z T, Marchenkov A N, Conrad E H, First P N, de Heer W A. J. Phys. Chem. B, 2004, 108: 19912—19916
[25] De Heer W A, Berger C, Wu X S, First P N, Conrad E H, Li X B, Li T B, Sprinkle M, Hass J, Sadowski M L, Potemski M, Martinez G. Solid State Commun., 2007, 143: 92—100
[26] Sutter P W, Flege J I, Sutter E A. Nat. Mater., 2008, 7: 406—411
[27] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H. Nature, 2009, 457: 706—710
[28] Reina A, Jia X T, Ho J, Nezich D, Son H B, Bulovic V, Dresselhaus M S, Kong J. Nano Lett., 2009, 9: 30—35
[29] Stankovich S, Piner R D, Chen X Q, Wu N Q, Nguyen S B T, Ruoff R S. J. Mater. Chem., 2006, 16: 155—158
[30] Stankovich S, Piner R D, Nguyen S B T, Ruoff R S. Carbon, 2006, 44: 3342—3347
[31] Li D, Muller M B, Gilje S, Kaner R B, Wallace G G. Nat. Nanotechnol., 2008, 3: 101—105
[32] Park S, Ruoff R S. Nat. Nanotechnol., 2009, 4: 217—224
[33] Buchsteiner A, Lerf A, Pieper J. J. Phys. Chem. B, 2006, 110: 22328—22338
[34] Brodie B C. Philos. Trans. R. Soc. London, 1859, 149: 249—259
[35] Staudenmaier L. Ber. Dtsch. Chem. Ges., 1898, 31: 1481—1487
[36] Hummers W S, Offeman R E. J. Am. Chem. Soc., 1958, 80: 1339—1339
[37] 傅玲(Fu L), 刘洪波(Liu H B), 邹艳红(Zou Y H), 李波(Li B). 炭素(Carbon), 2005, 10—14
[38] 杨永岗(Yang Y G), 陈成猛(Chen C M), 温月芳(Wen Y F), 杨全红(Yang Q H), 王茂章(Wang M Z). 新型炭材料(New Carbon Materials), 2008, 23(3): 193—200
[39] Wu J L, Shen X P, Jiang L, Wang K, Chen K M. Appl. Surf. Sci., 2010, 256: 2826—2830
[40] Pasricha R, Gupta S, Srivastava A K. Small, 2009, 5: 2253—2259
[41] Goncalves G, Marques P A A P, Granadeiro C M, Nogueira H I S, Singh M K, Gracio J. Chem. Mater., 2009, 21: 4796—4802
[42] Wang G X, Yang J, Park J, Gou X L, Wang B, Liu H, Yao J. J. Phys. Chem. C, 2008, 112: 8192—8195
[43] Ryan M, Seger B, Kamat P V. J. Phys. Chem. C, 2008, 112: 5263—5266
[44] Seger B, Kamat P V. J. Phys. Chem. C, 2009, 113: 7990—7995
[45] Wang G X, Wang B, Wang X L, Park J, Dou S X, Ahn H J, Kim K. J. Mater. Chem., 2009, 19: 8378—8384
[46] McAllister M J, Li J L, Adamson D H, Schniepp H C, Abdala A A, Liu J, Herrera-Alonso M, Milius D L, Car R, Prudhomme R K, Aksay I A. Chem. Mater., 2007, 19: 4396—4404
[47] Williams G, Seger B, Kamat P V. ACS Nano, 2008, 2: 1487—1491
[48] Williams G, Kamat P V. Langmuir, 2009, 25: 13869—13873
[49] Hassan H M A, Abdelsayed V, Khder A E R S, AbouZeid K M, Terner J, El-Shall M S, Al-Resayes S I, El-Azhary A A. J. Mater. Chem., 2009, 19: 3832—3837
[50] Murugan A V, Muraliganth T, Manthiram A. Chem. Mater., 2009, 21: 5004—5006
[51] Wang G X, Shen X P, Wang B, Yao J, Park J. Carbon, 2009, 47: 1359—1364
[52] Si Y C, Samulski E T. Chem. Mater., 2008, 20: 6792—6797
[53] Kou R, Shao Y Y, Wang D H, Engelhard M H, Kwak J H, Wang J, Viswanathan V V, Wang C M, Lin Y H, Wang Y, Aksay I A, Liu J. Electrochem. Commun., 2009, 11: 954—957
[54] Li Y M, Tang L H, Li J H. Electrochem. Commun., 2009, 11: 846—849
[55] Yoo E J, Okata T, Akita T, Kohyama M, Nakamura J J, Honma I. Nano Lett., 2009, 9: 2255—2259
[56] Dong L F, Gari R R S, Li Z, Craig M M, Hou S F. Carbon, 2010, 48: 781—787
[57] Xu C, Wang X, Zhu J W. J. Phys. Chem. C, 2008, 112: 19841—19845
[58] Scheuermann G M, Rumi L, Steurer P, Bannwarth W, Mülhaupt R. J. Am. Chem. Soc., 2009, 131: 8262—8270
[59] Guo S J, Dong S J, Wang E W. ACS Nano, 2010, 4: 547—555
[60] Xu C, Wang X. Small, 2009, 5: 2212—2217
[61] Zhou X Z, Huang X, Qi X Y, Wu S X, Xue C, Boey F Y C, Yan Q Y, Chen P, Zhang H. J. Phys. Chem. C, 2009, 113: 10842—10846
[62] Shen J F, Shi M, Li N, Yan B, Ma H W, Hu Y Z, Ye M X. Nano Res., 2010, 3: 339—349
[63] Kong B S, Geng J X, Jung H T. Chem. Commun., 2009, 2174—2176
[64] Li F H, Yang H F, Shan C S, Zhang Q X, Han D X, Ivaska A, Niu L. J. Mater. Chem., 2009, 19: 4022—4025
[65] Hong W J, Bai H, Xu Y X, Yao Z Y, Gu Z Z, Shi G Q. J. Phys. Chem. C, 2010, 114: 1822—1826
[66] Zhou H Q, Qiu C Y, Liu Z, Yang H C, Hu L J, Liu J, Yang H F, Gu C Z, Sun L F. J. Am. Chem. Soc., 2010, 132: 944—946
[67] Lu Y H, Zhou M, Zhang C, Feng Y P. J. Phys. Chem. C, 2009, 113: 20156—20160
[68] Luechinger N A, Booth N, Heness G, Bandyopadhyay S, Grass R N, Stark W J. Adv. Mater., 2009, 20: 3044—3049
[69] Warner J H, Rümmeli M H, Bachmatiuk A, Wilson M, Büchner B. ACS Nano, 2010, 4: 470—476
[70] Ao Z M, Yang J, Li S, Jiang Q. Chem. Phys. Lett., 2008, 461: 276—279
[71] Kim G, Jhi S H. J. Phys. Chem. C, 2009, 113: 20499—20503
[72] Liang M H, Zhi L J. J. Mater. Chem., 2009, 19: 5871—5878
[73] Lightcap I V, Kosel T H, Kamat P V. Nano Lett., 2010, 10: 577—583
[74] Lambert T N, Chavez C A, Hernandez-Sanchez B, Lu P, Bell N S, Ambrosini A, Friedman T, Boyle T J, Wheeler D R, Huber D L. J. Phys. Chem. C, 2009, 113: 19812—19823
[75] Wang D H, Choi D W, Li J, Yang Z G, Nie Z M, Kou R, Hu D H, Wang C M, Saraf L V, Zhang J G, Aksay I A, Liu J. ACS Nano, 2009, 3: 907—914
[76] Peng W Q, Wang Z M, Yoshizawa N, Hatori H, Hirotsu T. Chem. Commun., 2008, 4348—4350
[77] 张晓艳(Zhang X Y), 李浩鹏(Li H P), 崔晓莉(Cui X L). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2009, 25(11): 1903—1907
[78] Zhang H, Lv X J, Li Y M, Wang Y, Li J H. ACS Nano, 2010, 4: 380—386
[79] Xu C, Wang X, Zhu J W, Yang X J, Lu L. J. Mater. Chem., 2008, 18: 5625—5629
[80] Yang S B, Cui G L, Pang S P, Cao Q, Kolb U, Feng X L, Maier J, Müllen K. ChemSusChem, 2010, 3: 236—239
[81] Paek S M, Yoo E J, Honma I. Nano Lett., 2009, 9: 72—75
[82] Li F H, Song J F, Yang H F, Gan S Y, Zhang Q X, Han D X, Ivaska A, Niu L. Nanotechnology, 2009, 20: art. no. 455602
[83] Yao J, Shen X P, Wang B, Liu H K, Wang G X. Electrochem. Commun., 2009, 11: 1849—1852
[84] Zhang Y P, Li H B, Pan L K, Lu T, Sun Z. J. Electroanal. Chem., 2009, 634: 68—71
[85] Zheng W T, Ho Y M, Tian H W, Wen M, Qi J L, Li Y A. J. Phys. Chem. C, 2009, 113: 9164—9168
[86] Lee J M, Pyun Y B, Yi J, Choung J W, Park W I. J. Phys. Chem. C, 2009, 113: 19134—19138
[87] Nethravathi C, Nisha T, Ravishankar N, Shivakumara C, Rajamathi M. Carbon, 2009, 47: 2054—2059
[88] Nethravathi C, Rajamathi J T, Ravishankar N, Shivakumara C, Rajamathi M. Langmuir, 2008, 24: 8240—8244
[89] Nethravathi C, Viswanath B, Shivakumara C, Mahadevaiah N, Rajamathi M. Carbon, 2008, 46: 1773—1781
[90] Cao A N, Liu Z, Chu S S, Wu M H, Ye Z M, Cai Z W, Chang Y L, Wang S F, Gong Q H, Liu Y F. Adv. Mater., 2009, 21: 103—106
[91] Guo C X, Yang H B, Sheng Z M, Lu Z S, Song Q L, Li C M. Angew. Chem. Int. Ed., 2010, 49: 3014—3017
[92] Ding Y H, Jiang Y, Xu F, Yin J, Ren H, Zhuo Q, Long Z, Zhang P. Electrochem. Commun., 2010, 12: 10—13
[93] Chou S L, Wang J Z, Choucair M, Liu H K, Stride J A, Dou S X. Electrochem. Commun., 2009, 12: 303—306
[94] Watcharotone S, Dikin D A, Stankovich S, Piner R, Jung I, Dommett G H B, Evmenenko G, Wu S E, Chen S F, Liu C P, Nguyen S T, Ruoff R S. Nano Lett., 2007, 7: 1888—1892
[95] Ji F, Li Y L, Feng J M, Su D, Wen Y Y, Feng Y, Hou F. J. Mater. Chem., 2009, 19: 9603—9607
[96] Wang X R, Tabakman S M, Dai H J. J. Am. Chem. Soc., 2008, 130: 8152—8153
[97] Fan Y C, Wang L J, Li J L, Li J Q, Sun S K, Chen F, Chen L D, Jiang W. Carbon, 2010, 48: 1743—1749
[98] Yang X Y, Zhang X Y, Ma Y F, Huang Y, Wang Y S, Chen Y S. J. Mater. Chem., 2009, 19: 2710—2714
[99] Singh V K, Patra M K, Manoth M, Gowd G S, Vadera S R, Kumar N. New Carbon Materials, 2009, 24: 147—152
[100] Shen J F, Hu Y Z, Shi M, Li N, Ma H W, Ye M X. J. Phys. Chem. C, 2010, 114: 1498—1503
[101] Cong H P, He J J, Lu Y, Yu S H. Small, 2010, 6: 169—173
[102] Cai D Y, Song M, Xu C X. Adv. Mater., 2008, 20: 1706—1709
[103] Tung V C, Chen L M, Allen M J, Wassei J K, Nelson K, Kaner R B, Yang Y. Nano Lett., 2009, 9: 1949—1955
[104] Yoo E J, Kim J, Hosono E, Zhou H S, Kudo T, Honma I. Nano Lett., 2008, 8: 2277—2282
[105] Wu X J, Zeng X C. Nano Lett., 2009, 9: 250—256
[106] Zhang X Y, Huang Y, Wang Y, Ma Y F, Liu Z F, Chen Y S. Carbon, 2009, 47: 334—337
[107] Xu Y F, Liu Z B, Zhang X L, Wang Y, Tian J G, Huang Y, Ma Y F, Zhang X Y, Chen Y S. Adv. Mater., 2009, 21: 1275—1279
[108] Liu Z B, Xu Y F, Zhang X Y, Zhang X L, Chen Y S, Tian J G. J. Phys. Chem. B, 2009, 113: 9681—9686
[109] Zhang X Y, Liu Z B, Huang Y, Wan X J, Tian J G, Ma Y F, Chen Y S. J. Nanosci. Nanotech., 2009, 9: 5752—5756
[110] Yan J, Wei T, Shao B, Ma F Q, Fan Z J, Zhang M L, Zheng C, Shang Y C, Qian W Z, Wei F. Carbon, 2010, 48: 1731—1737

[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[3] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[4] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[5] Dong Baokun, Zhang Ting, He Fan. Research Progress and Application of Flexible Thermoelectric Materials [J]. Progress in Chemistry, 2023, 35(3): 433-444.
[6] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[7] Jing Li, Weigang Zhu, Wenping Hu. Organic Complex Materials and Devices for Near and Shortwave Infrared Photodetection [J]. Progress in Chemistry, 2023, 35(1): 119-134.
[8] Qitong Wang, Jiale Ding, Danying Zhao, Yunhe Zhang, Zhenhua Jiang. Dielectric Polymer Materials for Energy Storage Film Capacitors [J]. Progress in Chemistry, 2023, 35(1): 168-176.
[9] Yong Zhang, Hui Zhang, Yi Zhang, Lei Gao, Jianchen Lu, Jinming Cai. Surface Synthesis of Heteroatoms-Doped Graphene Nanoribbons [J]. Progress in Chemistry, 2023, 35(1): 105-118.
[10] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[11] Lin Chen, Jie-Feng Chen, Yi-Ren Liu, Yuyu Liu, Hai-Feng Ling, Ling-Hai Xie. Organic Strained Semiconductors and Their Optoelectronic Properties [J]. Progress in Chemistry, 2022, 34(8): 1772-1783.
[12] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[13] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[14] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[15] Fangyuan Li, Junhao Li, Yujie Wu, Kaixiang Shi, Quanbing Liu, Hongjie Peng. Design and Preparation of Electrode Nanomaterials with “Yolk-Shell”Structure for Lithium/Sodium-Ion/Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2022, 34(6): 1369-1383.
Viewed
Full text


Abstract

Graphene-based Inorganic Nanocomposites