中文
Announcement
More
Progress in Chemistry 2010, Vol. 22 Issue (11): 2089-2098 Previous Articles   Next Articles

Special Issue: 金属有机框架材料

• Review •

Methods of Creating Active sites in MOF and Catalytic Explorations

liu lili   zhang Xin**   Xu Chunming**   

  1. (State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing Changping, 102249)
  • Received: Revised: Online: Published:
  • Contact: zhang Xin E-mail:zhangxin@cup.edu.cn
PDF ( 1977 ) Cited
Export

EndNote

Ris

BibTeX

Due to its unique structural characteristics (the high specific surface area, tailoring structure properties and 100% utilization of exposed metal ions), metal organic framework (MOF) materials have drawn great attention on catalysis in recent years. However, the drawbacks of no open metal ions and poor thermal stability limit their application in catalysis. This tutorial review presents recent developments of the emerging field of MOF based catalysis. We summarize four distinct strategies: pre-synthesis method, post-synthesis modification, impregnation method and precipitation method, which have been utilized to create catalytic active sites in MOF. Examples of the catalytic reactions based on the created active sites in the MOF are then followed. It has been shown that the pre-synthesis method has been widely used in creating catalytic active sites in the MOF. MOF with active sites created by the pre-synthesis and the post-synthesis modification method in the MOF may act as “shape selective catalysis” as zeolite. Usually as a Lewis acid catalyst, MOFs are capable of being very active for many reactions, especially at temperatures below 100 oC. A critical comment on these methods and catalytic explorations has been addressed in order to guide the newcomer to this field.

 Contents
1 Introduction
2 The method of creating active sites in MOF and its application in catalysis
2.1 Pre-synthesis method and catalytic explorations
2.2 Post-synthesis modification and catalytic explorations
2.3 Impregnation method and catalytic explorations
2.4 Precipitation method and catalytic explorations
3 Conclusion and outlook

CLC Number: 

[1] Eddaoudi M, Moler D B, Li H L, Chen B L,Reineke T M, O'Keeffe M, Yaghi O M. Acc. Chem. Res., 2001, 34(4): 319—330
[2] Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O'Keeffe M, Yaghi O M. Science, 2002, 295(5554): 469—472
[3] Gándara F, Gomez-Lor B, Gutiérrez-Puebla E, Iglesias M, Monge M A, Proserpio D M, Snejko N. Chem. Mater., 2008, 20(1): 72—76
[4] Chen B, Ockwig N W, Millward A R, Contreras D S, Yaghi O M. Angew. Chem. Int. Ed., 2005, 44(30): 4745—4749
[5] Sonnauer A S, Hoffmann F, Froba M, Kienle L, Duppel V, Thommes M, Serre C, Ferey G, Stock N. Angew. Chem. Int. Ed., 2009, 48(21): 3791—3794
[6] Kubota Y, Takata M, Matsuda R, Kitaura R, Kitagawa S, Kobayashi T C. Angew. Chem. Int. Ed., 2006, 45(30): 4932—4936
[7] Dybtsev D N, Chun H, Kim K. Angew. Chem. Int. Ed., 2004, 43(38): 5033—5036
[8] 张杰鹏(Zheng J P), 韩正波(Han Z B), 陈小明(Chen X M). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2004, 20(10): 1213—1216
[9] 程采(Cheng C), 高洪芩(Gao H L), 程鹏(Cheng P). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2004, 20(10): 1237—1240
[10] 方千荣 (Fang Q R). 吉林大学博士论文 (Doctoral Dissertation of Jilin University), 2007
[11] Sun J Y, Weng L H, Zhou Y M, Chen J X, Chen Z X, Liu Z C, Zhao D Y. Angew. Chem. Int. Ed., 2002, 41(23): 4471—4473
[12] Chae H K, Siberio-Perez D Y, Kim J, Go Y, Eddaoudi M, Matzger A J, O'Keeffe M, Yaghi O M. Nature, 2004, 427(6974): 523—527
[13] Xiao B, Yuan Q C. Particuology, 2009, 7(2): 129—140
[14] Férey G, Mellot-Draznieks C, Serre C, Millange F,Dutour J, Surble S, Margiolaki I. Science, 2005, 309(5743): 2040—2042
[15] Zou R Q, Sakurai H, Han S, Zhong R Q, Xu Q. J. Am. Chem. Soc., 2007, 129(27): 8402—8403
[16] Kaye S S, Dailly A, Yaghi O M, Long J R. J. Am. Chem. Soc., 2007, 129(46): 14176—14177
[17] Park K S, Ni Z, Cté A P, Choi J Y, Huang R, Uribe-Romo F J, Chae H K, O'keeffe M, Yaghi O M. Proc. Natl. Acad. Sci. USA, 2006, 103(27): 10186 — 10191
[18] Huang X C, Lin Y Y, Zhang J P, Chen X M. Angew. Chem. Int. Ed., 2006, 45(10): 1557—1559
[19] Gomez-Lor B, Gutiérrez-puebla E, Iglesias M, Monge M A, Ruiz-Valero C S. Inorganic Chemistry, 2002, 41(9): 2429—2432
[20] Yaghi O M, Li H, Davis C, Richardson D, Groy T. Acc. Chem. Res., 1998, 31(8): 474—484
[21] 魏文英 (Wei W Y), 方键 (Fang J), 孔海宁 (Kong H N), 韩金玉(Han J Y), 常贺英 (Chang H Y). 化学进展 (Progress in Chemistry), 2005, 17(6):1110—1115
[22] Wang Z Q,Cohen S M. Chem. Soc. Rev., 2009, 38(5): 1315—1329
[23] 贾超 (Jia C), 原鲜霞 (Yuan X X), 马紫峰 (Ma Z F). 化学进展 (Progress in Chemistry), 2009, 21(9):1954—1962
[24] 穆翠枝 (Mu C Z), 徐峰 (Xu F), 雷威 (Lei W). 化学进展 (Progress in Chemistry), 2007, 19(9):1345—1356
[25] Wang Z, Chen G, Ding K L. Chem. Rev., 2009, 109(2): 322—359
[26] Ma L Q, Abney C, Lin W B. Chem. Soc. Rev., 2009, 38(5): 1248—1256
[27] Lee J Y, Farha O K, Roberts J, Scheidt K A, Nguyen S B T, Hupp J T. Chem. Soc. Rev., 2009, 38(5): 1450—1459
[28] Qiu L G, Gu L N, Hu G, Zhang L D. Journal of Solid State Chemistry, 2009, 182(3): 502—508
[29] Fujita M, Kwon Y J, Washizu S, Ogura K. J. Am. Chem. Soc., 1994, 116(3): 1151—1152
[30] Chui S S Y, Lo S M F, Charmant J P H, Orpen A G, Williams L D. Science, 1999, 283(5405): 1148—1150
[31] Schlichte K, Kratzke T, Kaskel S. Microporous Mesoporous Mater., 2004, 73(1/2): 81—88
[32] Dinc M, Dailly A, Liu Y, Brown C M, Neumann D A, Long J R. J. Am. Chem. Soc., 2006, 128(51): 16876—16883
[33] Horike S, Dincǎ M, Tamaki K, Long G R. J. Am. Chem. Soc., 2008, 130(18): 5854—5855
[34] Evans O R, Ngo H L, Lin W B. J. Am. Chem. Soc., 2001, 123(42): 10395—10396
[35] Hwang Y K, Hong D Y, Chang J S, Seo H, Yoon M, Kim J, Jhung S H, Serre C, Férey G. Applied Catalysis A: General, 2009, 358(2): 249—253
[36] Henschel A, Gedrich K, Kraehnert R, Kaskel S. Chem. Commun., 2008, 40(4): 4192—4194
[37] Zhou Y X, Song J L, Liang S G, Hu S Q, Liu H Z, Jiang T, Han B X. Journal of Molecular Catalysis A: Chemical, 2009, 308(1/2): 68—72
[38] Zou R Q, Sakurai H, Xu Q. Angew. Chem. Int. Ed., 2006, 45(16): 2542—2546
[39] Zou R Q, Sakurai H, Han S, Zhong R Q, Xu Q. J. Am. Chem. Soc., 2007, 129(27): 8402—8403
[40] Lu Y, Tonigold M, Bredenktter B, Volkmer D, Hitzbleck J, Langstein G. Z. Anorg. Allg. Chem., 2008, 634: 2411—2417
[41] Navarro J A R, Barea E, Salas J M, Masciocchi N, Galli S, Sironi A, Ania C O, Parra J B. Inorganic Chemistry, 2006, 45(6): 2397—2399
[42] Xamena F X L I, Abad A, Corma A, Garcia H. Journal of Catalysis, 2007, 250(2): 294—298
[43] Bellussi G, Rigutto M S. Stud. Surf. Sci. Catal., 1994, 85: 177—213
[44] Seelan S, Sinha A K. Appl. Catal. A: General, 2003, 238(2): 201—209
[45] Gascon J, Aktay U, Hernandez-Alonso M D, van Klink G P M, Kapteijn F. Journal of Catalysis, 2009, 261(1): 75—87
[46] Sun C Y, Liu S X, Liang D D, Shao K Z, Ren Y H, Su Z M. J. Am. Chem. Soc., 2009, 131(5): 1883—1888
[47] Suslick K S, Bhyrappa P, Chou J H, Kosal M E, Nakagaki S, Smithenry D W, Wilson S R. Acc. Chem. Res., 2005, 38(4): 283—291
[48] Shultz A M, Farha O K, Hupp J T, Nguyen S T. J. Am. Chem. Soc., 2009, 131(12): 4204—4205
[49] Zhang X, Xamena F X L I, Corma A. Journal of Catalysis, 2009, 265(2): 155—160
[50] Hwang Y K, Hong D Y, Chang J S, Jhung S H, Seo Y K, Kim J, Vimont A, Daturi M, Serre C, Férey G. Angew. Chem. Int. Ed., 2008, 47(22): 4144—4184
[51] Sabo M, Henschel A, Frde H, Klemm E, Kaskel S. J. Mater. Chem., 2007, 17(36): 3827—3832
[52] Maksimchuk N V, Timofeeva M N, Melgunov M S, Shmakov A N, Chesalov Y A, Dybtsev D N, Fedin V P, Kholdeeva O A. Journal of Catalysis, 2008, 257(2): 315—323
[53] Opelt S, Türk S, Dietzsch E, Henschel A, Kaskel S, Klemm E. Catalysis Communications, 2008, 9(6): 1286—1290
[54] Jiang H L, Liu B, Akita T, Haruta M, Sakurai H, Xu Q. J. Am. Chem. Soc., 2009, 131(32): 11302—11303

[1] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[2] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[3] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[4] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[5] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[6] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[7] Huiyue Wang, Xin Hu, Yujing Hu, Ning Zhu, Kai Guo. Enzyme-Catalyzed Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2022, 34(8): 1796-1808.
[8] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[9] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[10] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[11] Peng Wang, Huan Liu, Da Yang. Recent Advances on Tandem Hydroformylation of Olefins [J]. Progress in Chemistry, 2022, 34(5): 1076-1087.
[12] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[13] Fengshou Yu, Jiayu Zhan, Lu-Hua Zhang. The progress on Electrochemical CO2-to-Formate Conversion by p-Block Metal Based Catalysts [J]. Progress in Chemistry, 2022, 34(4): 983-991.
[14] Hao Sun, Chaopeng Wang, Jun Yin, Jian Zhu. Fabrication of Electrocatalytic Electrodes for Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 519-532.
[15] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.