中文
Announcement
More
Progress in Chemistry 2010, Vol. 22 Issue (10): 2071-2078 Previous Articles   

• Review •

Activated Carbon Catalyzed Peroxide Degradation of Organic Pollutants in Water

Yang Xin  Yang Shiying**  Shao Xueting  Wang Leilei  Niu Rui   

  1. (Key Laboratory of Marine Environment and Ecology, Ministry of Education; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China)
  • Received: Revised: Online: Published:
  • Contact: Yang Shiying E-mail:shiningpup@hotmail.com
PDF ( 2218 ) Cited
Export

EndNote

Ris

BibTeX

H2O2 can obviously be catalyzed by activated carbon (AC) on the AC surface, forming the free radicals of hydroxyl radical (•OH). As is to known,persulfate (PS) is similar to H2O2 in structure, so PS may be catalyzed by AC too, involving the formation of free radicals of sulfate radical (SO4−•). AC/peroxide (H2O2 or PS) combined system will be an efficient advanced oxidation technology of removing organic pollutants in water or wastewater. This paper, for the first time, reviews the research progress of the combined system in degrading organic pollutants, including AC/H2O2, AC/Fenton, AC/H2O2/UV light, AC/H2O2/microwave, AC/Fenton/microwave, AC/wet H2O2 oxidation, as well as AC/PS, AC/PS/metal ion, and AC/PS/ microwave. Both the interaction between AC and peroxide, and the prospects of AC/peroxide technology are also discussed.

Contents
1 Combined systems of AC and H2O2
1.1 AC/H2O2
1.2 AC/Fenton
1.3 AC/H2O2/UV Light
1.4 AC/H2O2/Microwave, AC/Fenton/Microwave
1.5 AC/Wet H2O2 Oxidation
2 Combined systems of AC and PS
2.1 AC/PS
2.2 AC/PS/metal Ion
2.3 AC/PS/microwave
3 Interaction between AC and peroxide
3.1 Impact of AC on peroxide
3.2 Impact of peroxide on AC
4 Conclusions and outlook

[1 ] Sánchez M L D,Macías-García A,Díaz-Díez M A,et al. Appl.
Surf. Sci. ,2006,252: 5984—5987
[2 ] Szymański G S. Catal. Today,2008,137: 460—465
[3 ] Masaru K, Ikuko M. Bull. Chem. Soc. Jpn. ,1994,67:
2357—2360
[4 ] Georgi A,Kopinke F D. Appl. Catal. B,2005,58: 9—18
[5 ] Bansal R C,Donnet J B,Stoeckli F. Active Carbon,New York:
Marcel Dekker,1988. 441
[6 ] Khalil L B, Girgis B S, Tawfik T A. J. Chem. Technol.
Biotechnol. ,2001,76 (11) : 1132—1140
[7 ] Huang H H,Lu M C,Chen J N,Lee C T. Chemosphere,2003,
51: 935—943
[8 ] Yu G X,Lu S X,Chen H,Zhu Z N. Carbon,2005,43:
2285—2294
[9 ] Elmer C L,James H W. J. Phys. Chem. ,1940,44 (1) : 70—
85
[10] Lücking F,Kser H,Jankand M,Ritter A. Water Res. ,1998,
32 (9) : 2607—2614
[11] Oliveira L C A,Silva C N,Yoshida M I,Lago R M. Carbon,
2004,42: 2279—2284
[12] Kurniawan T A,Lo W H. Water Res. ,2009,43: 4079—4091
[13] 汤烜( Tang X) ,李沪萍( Li H P) ,罗康碧( Luo K B) ,陈举恩
( Chen J E) ,宁平(Ning P) . 化工科技( Science & Technology
in Chemical Industry) ,2008,16 (2) : 10—12
[14] 孙大贵( Sun D G) ,陶长元( Tao C Y) ,刘作华( Liu Z H) ,杜
军( Du J ) ,刘仁龙( Liu R L ) . 环境科学( Environmental
Science) ,2007,28 (2) : 2734—2739
[15] 张静( Zhang J) ,沈迅伟( Shen X W) ,张春永( Zhang C Y) ,
袁春伟( Yuan C W) . 水处理技术( Technology of Water
Treatment) ,2004,30 (6) : 372—374
[16] Toledo L C,Silva A C B,Augusti R,Lago R M. Chemosphere,
2003,50: 1049—1054
[17] Fan H J,Chen I W,Lee M H,Chiu T. Chemosphere,2007,
67: 1647—1652
[18] 杜尔登(Du E D) ,张玉先( Zhang Y X) ,沈亚辉( Shen Y H) .
给水排水( Water & Wastewater Engineering ) , 2008, 134
(110) : 28—33
[19] Huling S G,Kan E,Wingo C. Appl. Catal. B,2009,89:
651—658
[20] Huling S G,Jonesa P K,Ela W P,Arnold R G. J. Environ.
Eng. ,2005,2: 287—297
[21] Huling S G,Jonesa P K,Ela W P,Arnold R G. Water Res. ,
2005,39: 2145—2153
[22] Kommineni S,Ela W P,Arnold R G,Huling S G,Hester B J,
Betterton E A. Environ. Eng. Sci. ,2003,20(4) : 361—373
[23] Huling S G,Arnold R G,Jones P K,Sierka R A. J. Environ.
Eng. ,2000,126 (4) : 348—353
[24] Ince N H,Hasan D A, Ustün B, Tezcanli G. Water Sci.
Technol. ,2002,46 (4 /5) : 51—58
[25] Ince N H,Apikyan I G. Water Res. ,2000,34 (17) : 4169—
4176
[26] Horng R S,Tseng I C. J. Hazard. Mater. ,2008,154: 366—
372
[27] Tai H S,Chih J G. Chemosphere,1999,38 (11) : 2667—2680
[28] 肖新荣( Xiao X R) ,陈仲青( Chen Z Q) ,赵成祥( Zhao C
X) ,黄增勇( Huang Z Y) . 南华大学学报( 自然科学版)
( Journal of Nanhua University ( Science and Technology ) ) ,
2005,19 (3) : 20—24
[29] 陈芳艳( Chen F Y) ,肖洁(Xiao J) ,唐玉斌( Tang Y B) . 化
工环保( Environmental Protection of Chemical Industry) ,2008,
28 (2) : 106—110
[30] Debellefontaine H, Chakchouk M, Foussard J N, Tissot D,
Striolo R. Environ. Pollut. ,1996,92 (2) : 155—164
[31] 孟志国(Meng Z G) ,王金生(Wang J S) ,付磊( Fu L) ,杨凤
林(Yang F L) ,胡绍伟(Hu S W) . 西安建筑科技大学学报
( 自然科学版) ( J. Xi′ an Univ. Arch. & Tech. ( Natural
Science Edition) ) ,2009,41 (4) : 571—574
[32] Rey A,Faraldos M,Casas J A,Zazo J A,Bahamonde A,
Rodríguez J J. Appl. Catal. B,2009,86: 69—77
[33] Liou R M,Chen S H. J. Hazard. Mater. ,2009,172: 498—
506
[34] Okawa K,Suzuki K,Takeshita T,Nakano K. Water Res. ,
2007,41: 1045—1051
[35] Liang C J,Lin Y T,Shih W H. Ind. Eng. Chem. Res. ,2009,
48: 8373—8380
[36] Liang C J,Lin Y T,Shih W H. J. Hazard. Mater. ,2009,
168: 187—192
[37] Yang S Y,Wang P,Yang X,Wei G,Zhang W Y,Shan L. J.
Environ. Sci. ,2009,21: 1175—1180
[38] Quan X,Zhang Y B,Chen H,Zhao Y Z,Yang F L. J. Mol.
Catal. A: Chem. ,2007,263: 216—222
[39] Salame I I,Bandosz T J J. Colloid Interface Sci. ,1999,210:
367—374
[40] Marín F C,Mueden A,Centeno T A,Stoeckli F,Castilla C M.
J. Chem. Soc. ,Faraday Trans. ,1997,93(12) : 2211—2215
[41] Castilla C M,Garcia M A F,Joly J P,Toledo I B,Marín F C,
Utrilla J R. Langmuir,1996,11: 4386—4392
[42] 孟冠华(Meng G H) ,李爱民( Li A M) ,张全兴( Zhang Q X) .
离子交换与吸附( Ion Exchange and Adsorption ) ,2007,23
(1) : 88—94
[43] 余国贤(Yu G X) ,陈辉( Chen H) ,陆善祥( Lu S X) ,朱中南
( Zhu Z N) . 燃料化学学报( Journal of Fuel Chemistry and
Technology) ,2005,33 (5) : 566—570
[44] Boehm H P. Carbon,2002,40: 145—149
[45] Tseng H H,Wey M Y. Chemosphere,2006,62: 756—766
[46] Lahaye J. Fuel,1998,11 (6) : 543—547
[47] Figueiredo J L,Pereira M F R,Freitas M M A,rfo J J M.
Carbon,1999,37: 1379—1389
[48] Castilla C M. Carbon,2004,42: 83—94

[1] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[2] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[3] Feng Li, Qingyun He, Fang Li, Xiaolong Tang, Changlin Yu. Materials for Hydrogen Peroxide Production via Photocatalysis [J]. Progress in Chemistry, 2023, 35(2): 330-349.
[4] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[5] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[6] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[7] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[8] Huiyue Wang, Xin Hu, Yujing Hu, Ning Zhu, Kai Guo. Enzyme-Catalyzed Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2022, 34(8): 1796-1808.
[9] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[10] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[11] Peng Wang, Huan Liu, Da Yang. Recent Advances on Tandem Hydroformylation of Olefins [J]. Progress in Chemistry, 2022, 34(5): 1076-1087.
[12] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[13] Wenyan Gao, Xuan Zhao, Xilin Zhou, Yaran Song, Qingrui Zhang. Strategies, Research Progress and Enlightenment of Enhancing the Heterogeneous Fenton Catalytic Reactivity: A Critical Review [J]. Progress in Chemistry, 2022, 34(5): 1191-1202.
[14] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[15] Fengshou Yu, Jiayu Zhan, Lu-Hua Zhang. The progress on Electrochemical CO2-to-Formate Conversion by p-Block Metal Based Catalysts [J]. Progress in Chemistry, 2022, 34(4): 983-991.