中文
Announcement
More
Progress in Chemistry 2010, Vol. 22 Issue (10): 1940-1951 Previous Articles   Next Articles

• Review •

Application of Organic Macrocyclic Supramolecular Structures on Adsorption and Conversion of Carbon Dioxide

Li Peipei   Liu Li**   

  1. (Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China)
  • Received: Revised: Online: Published:
  • Contact: Li Liu E-mail:lliu@dicp.ac.cn
PDF ( 2215 ) Cited
Export

EndNote

Ris

BibTeX

Adsorption and conversion of carbon dioxide has called attention worldwidely not only due to the increasing environmental concerns, but also in view of the carbon resource utilization. The research progress on the physical adsorption and chemical conversion of carbon dioxide using organic macrocyclic supramolecular host structures, such as crown ether, cyclodextrin, calixarene and cucurbituril has been overviewed. With intrinsic cavity structure, the organic macrocyclic supramolecular hosts can further form porous materials through self-assembly. On one hand, selective adsorption and separation of carbon dioxide by the organic macrocyclic supramolecular hosts, their derivatives and porous self-assembly materials with specific size and versatile shape is reviewed. On the other hand, the chemical conversion of carbon dioxide involves the reactions with amines, epoxides, alcohols and phenates in the presence of organic macrocyclic supramolecular host structures which act as reactants, catalysts or cocatalysts. These chemical transformations of carbon dioxide enable the utilization of carbon resource and the preparation of functional materials. The review demonstrates the unique applications of molecular recognition and assembly characteristics of organic macrocyclic supramolecular structures on the adsorption and conversion of carbon dioxide. What is more, the outlook of the research area is also provided.

Contents
1 Introduction
2 Adsorption of CO2 by organic macrocyclic supramolecular structures
2.1 Adsorption of CO2 by crown ether
2.2 Adsorption of CO2 by cyclodextrin
2.3 Adsorption of CO2 by calixarene
2.4 Adsorption of CO2 by cucurbituril
3 Chemical conversion of CO2 in the presence of organic macrocyclic supramolecular structures
3.1 Reaction of CO2 with amines
3.2 Reaction of CO2 with epoxides
3.3 Reaction of CO2 with alcohols
3.4 Reaction of CO2 with phenates
4 Conclusions and outlook

[1 ] Sakakura T,Choi J,Yasuda H. Chem. Rev. ,2007,107:
2365—2387
[2 ] 董冬吟(Dong D Y) ,杨琍苹( Yang L P) ,胡文浩( Hu W
H) . 化学进展( Progress in Chemistry ) ,2009,21 ( 6 ) :
1217—1228
[3 ] 刘育( Liu Y) ,尤长城(You C C) ,张衡益( Zhang H Y) . 超
分子化学———合成受体的分子识别与组装( Supramolecular
Chemistry———Molecular Recognition and Assembly of Synthetic
Receptors) . 天津: 南开大学出版社( Tianjin: Nankai
University Press) ,2001. 6—400
[4 ] Steed J W, Atwood J L. 超分子化学( Supramolecular
Chemistry ) . 北京: 化学工业出版社( Beijing: Chemistry
Industry Press) ,2006. 1—271
[5 ] Rudkevich D M. Angew. Chem. Int. Ed. ,2004,43: 558—571
[6 ] Rudkevich D M. Eur. J. Org. Chem. ,2007,20: 3255—3270
[7 ] Rudkevich D M,Leontiev A V. Aust. J. Chem. ,2004,57:
713—722
[8 ] Linford R G,Thornhill D G T. J. Chem. Thermodyn. ,1985,
17: 701—702
[9 ] Neoh T L, Yoshii H, Furuta T. J. Inclusion Phenom.
Macrocyclic Chem. ,2006,56: 125—133
[10] Fenyvesi E, Szente L, Russel N R, McNamara M.
Comprehensive Supramolecular Chemistry. NY: Pergamon,
1996. 305—366
[11] Cram D J,Tanner M E,Knobler C B. J. Am. Chem. Soc. ,
1991,113: 7717—7727
[12] Leontiev A V, Rudkevich D M. Chem. Commun. , 2004,
1468—1469
[13] Atwood J L,Barbour L J,Jerga A,Schottel B L. Science,
2002,298: 1000—1002
[14] Atwood J L,Barbour L J,Jerga A. Angew. Chem. Int. Ed. ,
2004,43: 2948—2950
[15] Udachin K A,Moudrakovski I L,Enright G D,Ratcliffe C I,
Ripmeester J A. Phys. Chem. Chem. Phys. , 2008, 10:
4636—4643
[16] Thallapally P K,Dalgarno S J,Atwood J L. J. Am. Chem.
Soc. ,2006,128: 15060—15061
[17] Tsue H,Ishibashi K,Tokita S,Takahashi H,Matsui K,Tamura
R. Chem. Eur. J. ,2008,14: 6125—6134
[18] Tsue H,Matsui K,Ishibashi K,Takahashi H,Tokita S,Ono
K,Tamura R. J. Org. Chem. ,2008,73: 7748—7755
[19] Tsue H,Ishibashi K,Takahashi H,Tamura R. Org. Lett. ,
2005,7: 2165—2168
[20] Ananchenko G S,Moudrakovski I L,Coleman A W,Ripmeester
J A. Angew. Chem. Int. Ed. ,2008,47: 5616—5618
[21] Canelas D A, Desimone J M. Macromolecules, 1997, 30:
5673—5682
[22] Miyahara Y,Abe K,Inazu T. Angew. Chem. Int. Ed. ,2002,
41: 3020—3023
[23] Hampe E M,Rudkevich D M. Chem. Commun. ,2002,1450—
1451
[24] Hampe E M,Rudkevich D M. Tetrahedron,2003,59: 9619—
9625
[25] Xu H,Hampe E M,Rudkevich D M. Chem. Commun. ,2003,
2828—2829
[26] Xu H,Rudkevich D M. Chem. Eur. J. ,2004,10: 5432—
5442
[27] Rudkevich D M,Xu H. Chem. Commun. ,2005,2651—2659
[28] Xu H,Rudkevich D M. J. Org. Chem. ,2004,69: 8609—
8617
[29] Stastny V,Anderson A,Rudkevich D M. J. Org. Chem. ,
2006,71: 8696—8705
[30] Xu H,Rudkevich D M. Org. Lett. ,2005,7: 3223—3226
[31] Zhang H X,Rudkevich D M. Chem. Commun. ,2007,4893—
4894
[32] Stastny V,Rudkevich D M. J. Am. Chem. Soc. ,2007,129:
1018—1019
[33] Kihara N,Hara N,Endo T. J. Org. Chem. ,1993,58: 6198—
6202
[34] Huang J W,Shi M. J. Org. Chem. ,2003,68: 6705—6709
[35] Zhao T,Han Y,Sun Y. Phys. Chem. Chem. Phys. ,1999,1:
3047—3051
[36] Park S W,Choi B S,Park D W,Kim S S. J. Ind. Eng.
Chem. ,2005,11: 527—532
[37] Kasuga K,Kabata N. Inorg. Chim. Acta,1997,257: 277—
278
[38] Rokicki G, Kuran W, Pogorzelska-Marciniak B. Monatsh.
Chem. ,1984,115: 205—214
[39] Yamamoto S,Moriya O,Endo T. Macromolecules,2003,36:
1514—1521
[40] Yamamoto S,Moriya O,Endo T. Macromolecules,2005,38:
2154—2158
[41] Song J L,Zhang Z F,Han B X,Hu S Q,Li W J,Xie Y. Green
Chem. ,2008,10: 1337—1341
[42] Kohno K, Choi J, Ohshima Y, Yasuda H, Sakakura T.
ChemSusChem,2008,1: 186—188
[43] Sakakura T, Saito Y,Okano M,Choi J, Sako T. J. Org.
Chem. ,1998,63: 7095—7096
[44] Baxter J,Yamaguchi T. J. Chem. Res. ( S) ,1997,10: 374—
375
[45] Rokicki G,Kuran W,Kielkiewicz J. J. Polymer Sci. Polymer
Chem. Ed. ,1982,20: 967—976
[46] Wu S T,Ma L Q,Long L S,Zheng L S,Lin W B. Inorg.
Chem. ,2009,48: 2436—2442
[47] Vaidhyanathan R,Iremonger S S,Dawson K W,Shimizu G K
H. Chem. Commun. ,2009,5230—5232
[48] Janzen D E,Botros M E,Vanderveer D G,Grant G J. J. Chem.
Soc. Dalton Trans. ,2007,45: 5316—5321
[49] Furukawa H,Yaghi O M. J. Am. Chem. Soc. ,2009,131:
8875—8883
[50] Pan L,Admas K M,Hernandez H E,Wang X T,Zheng C,
Hattori Y, Kaneko K. J. Am. Chem. Soc. , 2003, 125:
3062— 3067
[51] Eddaoudi M,Li H,Yaghi O M. J. Am. Chem. Soc. ,2000,
122: 1391—1397
[52] Babarao R, Jiang J W. J. Am. Chem. Soc. ,2009,131:
11417—11425
[53] Wu H,Zhou W,Yildirim T. J. Am. Chem. Soc. ,2009,131:
4995—5000
[54] Li J R,Kuppler R J,Zhou H C. Chem. Soc. Rev. ,2009,38:
1477—1504
[55] Millange F,Guillou N,Walton R I,Grenèche J M,Margiolaki
I,Férey G. Chem. Commun. ,2008,39: 4732—4734
[56] Gao G G,Li F Y,Xu L,Liu X Z,Yang Y Y. J. Am. Chem.
Soc. ,2008,130: 10838—10839
[57] Noro S,Tsunashima R,Kamiya Y,Uemura K,Kita H,Cornin
L,Akutagawa T,Nakamura T. Angew. Chem. Int. Ed. ,2009,48: 8703—8706
[58] Jiang C J,Guo Y H,Wang C G,Hu C W,Wu Y,Wang E B.
Appl. Catal. A,2003,256: 203—212
[59] Yasuda H,He L N,Sakakura T,Hu C W. J. Catal. ,2005,
233: 119—122
[60] Sankar M,Tarte N H,Manikandan P. Appl. Catal. A,2004,
276: 217—222
[61] Sun D W,Zhai H J. Catal. Commun. ,2007,8: 1027—1030
[62] Darensbourg D J,Bauch C G,Rheingold A L. Inorg. Chem. ,
1987,26: 977—980
[63] Nakajima Y,Okuda J. Organometallics,2007,26: 1270—1278
[64] Mmming C M,Ottern E,Kehr G,Frhlich R,Grimme S,
Stephan D W,Erker G. Angew. Chem. Int. Ed. ,2009,48:
6643—6646
[65] Sozzani P, Bracco S, Comotti A, Ferretti L, Simonutti R.
Angew. Chem. Int. Ed. ,2005,44: 1816—1820
[66] Neogi S,Navarro J A R,Bharadwaj P K. Cryst. Growth Des. ,
2008,8: 1554—1558
[67] Jiang H M,Zhang S F,Xu Y M. J. Mol. Struct. ,2009,919:
21—25
[68] Daschbach J L,Sun X Q,Chang T M,Thallapally P K,McGrail
B P,Dang L X. J. Phys. Chem. A,2009,113: 3369—3374
[69] Adams J E,Cox J R,Christiano A J,Deakyne C A. J. Phys.
Chem. A,2008,112: 6829—6839
[70] Alavi S,Ripmeester J A. Chem. Eur. J. ,2008,14: 1965—
1971
[71] Janzen D E,Botros M E,van Derveer D G,Grant G J. J.
Chem. Soc. Dalton Trans. ,2007,5316—5321
[72] Fischer R,Grls H,Walther D. Eur. J. Inorg. Chem. ,2004,
1243—1252
[73] Hiratani K,Sakamoto N,Kameta N,Karikomi M,Nagawa Y.
Chem. Commun. ,2004,1474—1475
[74] Company A,Jee J,Ribas X,Lopez-Valbuena J M,Gómez L,
Corbella M,Llobet A,Mahía J,Benet-Buchholz J,Costas M,
Eldik R V. Inorg. Chem. ,2007,46: 9098—9110
[75] Chen J M,Wei W,Feng X L,Lu T B. Chem. Asian J. ,2007,
2: 710—719

[1] Wang Long, Zhou Qingping, Wu Zhaofeng, Zhang Yanming, Ye Xiaowo, Chen Changxin. Photovoltaic Cells Based on Carbon Nanotubes [J]. Progress in Chemistry, 2023, 35(3): 421-432.
[2] Jiang Haoyang, Xiong Feng, Qin Mulin, Gao Song, He Liuruyi, Zou Ruqiang. Conductive Phase Change Materials (PCMs) for Electro-to-Thermal Energy Conversion, Storage and Utilization [J]. Progress in Chemistry, 2023, 35(3): 360-374.
[3] Qiyao Guo, Jialong Duan, Yuanyuan Zhao, Qingwei Zhou, Qunwei Tang. Hybrid Energy Harvesting Solar Cells―From Principles to Applications [J]. Progress in Chemistry, 2023, 35(2): 318-329.
[4] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[5] Keqing Wang, Huimin Xue, Chenchen Qin, Wei Cui. Controllable Assembly of Diphenylalanine Dipeptide Micro/Nano Structure Assemblies and Their Applications [J]. Progress in Chemistry, 2022, 34(9): 1882-1895.
[6] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[7] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[8] Senlin Tang, Huan Gao, Ying Peng, Mingguang Li, Runfeng Chen, Wei Huang. Non-Radiative Recombination Losses and Regulation Strategies of Perovskite Solar Cells [J]. Progress in Chemistry, 2022, 34(8): 1706-1722.
[9] Bao Li, Lixin Wu. Liquid Condensed Matter Mediated Assembly and Functionality of Dispersoid [J]. Progress in Chemistry, 2022, 34(7): 1600-1609.
[10] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[11] Dongxue Han, Xue Jin, Wangen Miao, Tifeng Jiao, Pengfei Duan. Responsiveness of Excited State Chirality Based on Supramolecular Assembly [J]. Progress in Chemistry, 2022, 34(6): 1252-1262.
[12] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[13] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[14] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[15] Jiahui Ma, Wei Yuan, Simin Liu, Zhiyong Zhao. Self-Assembly of Small Molecule Modified DNA and Their Application in Biomedicine [J]. Progress in Chemistry, 2022, 34(4): 837-845.