中文
Announcement
More
Progress in Chemistry 2010, Vol. 22 Issue (10): 1892-1900 Previous Articles   Next Articles

• Review •

Preparation of Silica Aerogels via Ambient Pressure Drying

Wu Guoyou1  Cheng Xuan1, 2**   YU Yuxi1, 2   Zhang Ying1, 2   

  1. (1. Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen F J 361005, China; 2. Fujian Key Laboratory of Advanced Materials, Xiamen University, Xiamen F J 361005, China)
  • Received: Revised: Online: Published:
  • Contact: Cheng Xuan E-mail:xcheng@xmu.edu.cn
PDF ( 3483 ) Cited
Export

EndNote

Ris

BibTeX

Silica aerogels are the lightest materials with a typical interconnected nanostructure. They have received much attention due to their extraordinary properties and their potential applications in many fields. Conventionally silica aerogels have been made by supercritical drying process which is complicated, expensive and unsafe to a certain extent. In order to promote the production of silica aerogels on a large scale and for commercial applications, it is urgently necessary to probe the preparing technique of silica aerogels via ambient pressure drying at a reasonable cost. In recent years, significant developments in the ambient pressure drying technique have been obtained. This article gives an overview of the recent research progresses in preparation methods of silica aerogels via ambient pressure drying technique and the most updated information in preparation of silica aerogel composite materials. Silica aerogel composite materials reinforced by fiber and polymer improve the mechanical properties and further widening the application areas of silica aerogels.

Contents
1 Introduction
2 Drying methods
2.1 Drying principle
2.2 Supercritical drying technique
2.3 Ambient pressure drying technique
3 Studies in silica aerogel composites
3.1 Silica aerogel composites reinforced by fibers
3.2 Silica aerogel composites reinforced by polymers
4 Summarization

[1 ] Nicola H,Ulrich S. Angew. Chem. Int. Ed. ,1998,37 ( 1 /
2) : 22—45
[2 ] Dorcheh A S,Abbasi M H. J. Mater. Process. Tech. ,2008,
199 (1 /3) : 10—26
[3 ] Fricke J,Emmerling A. J. Sol-Gel Sci. Tech. ,1998,13 (1) :
299—303
[4 ] Schmidt M,Schwertfeger F. J. Non-Cryst. Solids,1998,225
(1) : 364—368
[5 ] Cantin M,Casse M,Koch L,Jouan R,Mestreau P,Roussel D,
Bonnin F,Moutel J,Teichner S J. Nucl. Instrm. Methods,
1974,118 (1) : 177—182
[6 ] Morris C A,Anderson M L,Stroud R M,Merzbacher C I,
Rolison D R. Science,1999,284 (5414) : 622—624
[7 ] Gauthier B M,Bakrania S D,Anderson A M,Carroll M K. J.
Non-Cryst. Solids,2004,350: 238—243
[8 ] Tewari P H,Lofftus K D,Hunt A J. in Structure and chemistry
of sol-gel derived transparent silica aerogel. The 2ed International
Conference on Ultrastructure Processing of Ceramics,Glasses and
Composites, Florida, 1985. New York: Wiley Interscience
Publications,1985. 17—18
[9 ] 史非( Shi F) ,王立久(Wang L J) ,刘敬肖( Liu J X) ,曾淼
( Zeng M ) . 无机化学学报( Chinese Journal of Inorganic
Chemistry) ,2005,21 (11) : 1632—1636
[10] Rao A V,Kulkarni M M,Amalnerkar D P,Seth T. Appl. Surf.
Sci. ,2003,206 (1 /4) : 262—270
[11] Land V D,Harris T M,Teeters D C. J. Non-Cryst. Solids,
2001,283 (1 /3) : 11—17
[12] Lenza R F S,Vasconcelos W L. J. Non-Cryst. Solids,2003,
330 (1 /3) : 216—225
[13] Rao A V,Kulkarni M M. Mater. Chem. Phys. ,2003,77 (3) :
819—825
[14] Shajesh P,Smitha S,Aravind P R,Warrier K G K. J. Colloid
Interface Sci. ,2009,336 (2) : 691—697
[15] Einarsrud M A,Nilsen E. J. Non-Cryst. Solids,1998,226 (1 /
2) : 122—128
[16] Rolison D R,Dunn B. J. Mater. Chem. ,2001,11 ( 4 ) :
963—980
[17] Haereid S,Dahle M,Lima S,Einarsrud M A. J. Non-Cryst.
Solids,1995,186: 96—103
[18] Haereid S,Nilsen E,Einarsrud M A. J. Non-Cryst. Solids,
1996,204 (3) : 228—234
[19] Haereid S,Anderson J,Einarsrud M A,Hua D W,Smith D M.
J. Non-Cryst. Solids,1995,185 (3) : 221—226
[20] He F,Zhao H,Qu X,Zhang C,Qiu W. J. Mater. Process.
Tech. ,2009,209 (3) : 1621—1626
[21] Schwertfeger F,Frank D,Schmidt M. J. Non-Cryst. Solids,
1998,225 (1) : 24—29
[22] Prakash S S,Brinker C J,Hurd A J. J. Non-Cryst. Solids,
1995,190 (3) : 264—275
[23] Deshpande R,Hua D W,Smith D M,Brinker C J. J. Non-
Cryst. Solids,1992,144: 32—44
[24] Ziegler B,Gerber T. US 6017505,2000
[25] Kang S K,Choi S Y. J. Mater. Sci. ,2000,35 (19) : 4971—
4976
[26] Kwon Y G,Choi S Y,Kang E S,Baek S S. J. Mater. Sci. ,
2000,35 (24) : 6075—6079
[27] Wei T Y,Chang T F,Lu S Y,Chang Y C. J. Am. Ceram.
Soc. ,2007,90 (7) : 2003—2007
[28] Rao A P,Rao A V,Pajonk G M. Appl. Surf. Sci. ,2007,253
(14) : 6032—6040
[29] Hwang S W,Jung H H,Hyun S H,Ahn Y S. J. Sol-Gel Sci.
Tech. ,2007,41 (2) : 139—146
[30] Lee C J,Kim G S,Hyun S H. J. Mater. Sci. ,2002,37 (11) :
2237—2241
[31] Shi F,Wang L J,Liu J X. Mater. Lett. ,2006,60 (29 /30 ) :3718—3722
[32] Wang L J,Zhao S Y,Yang M. Mater. Chem. Phys. ,2009,
113 (1) : 485—490
[33] Bhagat S D,Kim Y H,Suh K H,Ahn Y S,Yeo J G,Han J H.
Micropor. Mesopor. Mat. ,2008,112 (1 /3) : 504—509
[34] Gurav J L,Rao A V,Rao A P,Nadargi D Y,Bhagat S D. J.
Alloys Compd. ,2009,476 (1 /2) : 397—402
[35] Rao A V,Kulkarni M M,Amalnerkar D P,Seth T. J. Non-
Cryst. Solids,2003,330 (1 /3) : 187—195
[36] Rao A V,Bhagat S D,Hirashima H,Pajonk G M. J. Colloid
Interface Sci. ,2006,300 (1) : 279—285
[37] Bhagat S D,Oh C S,Kim Y H,Ahn Y S,Yeo J G. Micropor.
Mesopor. Mat. ,2007,100 (1 /3) : 350—355
[38] Bhagat S D,Kim Y H,Ahn Y S,Yeo J G. Appl. Surf. Sci. ,
2007,253 (6) : 3231—3236
[39] Bhagat S D,Kim Y H,Moon M J,Ahn Y S,Yeo J G. Solid
State Sci. ,2007,9 (7) : 628—635
[40] Bhagat S D,Kim Y H,Ahn Y S,Yeo J G. Micropor. Mesopor.
Mat. ,2006,96 (1 /3) : 237—244
[41] Rao A V,Wagh P B. Mater. Chem. Phys. ,1998,53 ( 1 ) :
13—18
[42] Schwertfeger F,Glaubitt W,Schubert U. J. Non-Cryst. Solids,
1992,145: 85—89
[43] 吴国友(Wu G Y) ,余煜玺(Yu Y X) ,程璇( Cheng X) ,张颖
( Zhang Y ) . 硅酸盐学报( Journal of the Chinese Ceramic
Society) ,2009,37(7) : 1206—1211
[44] Frank D,Thonnessen F,Zimmermann A. US 5786059,1998
[45] Karout A,Buisson P,Perrard A,Pierre A. J. Sol-Gel Sci.
Tech. ,2005,36 (2) : 163—171
[46] Kim G S,Hyun S H. J. Mater. Sci. ,2003,38 (9 ) : 1961—
1966
[47] Ryu J. US 6068882,2000
[48] Coronado P R,Poco J F. US 6087407,2000
[49] Paik J A, Sakamoto J, Jones S. Improved Silica Aerogel
Composite Materials. (2008-09-01 ) . http: / /www. techbriefs.
com / component / content / article /3125
[50] Stein A,Melde B J,Schroden R C. Adv. Mater. ,2000,12
(19) : 1403—1419
[51] Stein A. Adv. Mater. ,2003,15 (10) : 763—775
[52] Fidalgo A,Farinha J P S,Martinho J M G,Rosa M E,Ilharco L
M. Chem. Mater. ,2007,19 (10) : 2603—2609
[53] Mulik S,Sotiriou-Leventis C,Churu G,Lu H,Leventis N.
Chem. Mater. ,2008,20 (15) : 5035—5046
[54] Katti A,Shimpi N,Roy S,Lu H,Fabrizio E F,Dass A,
Capadona L A,Leventis N. Chem. Mater. ,2005,18 ( 2 ) :
285—296
[55] Capadona L A,Meador M A B, Alunni A, Fabrizio E F,
Vassilaras P,Leventis N. Polymer,2006,47 ( 16 ) : 5754—
5761
[56] Meador M A B,Fabrizio E F,Ilhan F,Dass A,Zhang G,
Vassilaras P,Johnston J C,Leventis N. Chem. Mater. ,2005,
17 (5) : 1085—1098
[57] Capadona L A,Meador M A B. X-Aerogel Processing Time
Reduced by One-Pot Synthesis. ( 2007-12-14 ) . http: / /www.
grc. nasa. gov /WWW/RT /2006 /RX /RX20P-capadona1. html
[58] Casas L,Roig A,Rodriguez E,Molins E,Tejada J,Sort J. J.
Non-Cryst. Solids,2001,285 (1 /3) : 37—43
[59] Tamon H,Sone T,Mikami M,Okazaki M. J. Colloid Interface
Sci. ,1997,188 (2) : 493—500
[60] Deng Z,Wang J,Zhang Y,Weng Z,Zhang Z,Zhou B,Shen
J,Cheng L. Nanostr. Mater. ,1999,11 (8) : 1313—1318
[61] Carta D,Corrias A,Mountjoy G,Navarra G. J. Non-Cryst.
Solids,2007,353 (18 /21) : 1785—1788

[1] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[2] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[3] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[4] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[5] Yan Xu, Chungang Yuan. Preparation, Stabilization and Applications of Nano-Zero-Valent Iron Composites in Water Treatment [J]. Progress in Chemistry, 2022, 34(3): 717-742.
[6] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[7] Xiangkang Cao, Xiaoguang Sun, Guangyi Cai, Zehua Dong. Durable Superhydrophobic Surfaces: Theoretical Models, Preparation Strategies, and Evaluation Methods [J]. Progress in Chemistry, 2021, 33(9): 1525-1537.
[8] Zhen Zhang, Shuang Zhao, Guobing Chen, Kunfeng Li, Zhifang Fei, Zichun Yang. Preparation and Applications of Silicon Carbide Monolithic Aerogels [J]. Progress in Chemistry, 2021, 33(9): 1511-1524.
[9] Jinzhao Li, Zheng Li, Xupin Zhuang, Jixian Gong, Qiujin Li, Jianfei Zhang. Preparation of Cellulose Nanocrystallines and Their Applications in CompositeMaterials [J]. Progress in Chemistry, 2021, 33(8): 1293-1310.
[10] Lizhong Chen, Qiaobin Gong, Zhe Chen. Preparation and Application of Ultra-Thin Two Dimensional MOF Nanomaterials [J]. Progress in Chemistry, 2021, 33(8): 1280-1292.
[11] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[12] Ying Yang, Shupeng Ma, Yuan Luo, Feiyu Lin, Liu Zhu, Xueyi Guo. Multidimensional CsPbX3 Inorganic Perovskite Materials: Synthesis and Solar Cells Application [J]. Progress in Chemistry, 2021, 33(5): 779-801.
[13] Ying Yang, Yuan Luo, Shupeng Ma, Congtan Zhu, Liu Zhu, Xueyi Guo. Advances of Electron Transport Materials in Perovskite Solar Cells: Synthesis and Application [J]. Progress in Chemistry, 2021, 33(2): 281-302.
[14] Ying Geng, Mohe Zhang, Jin Fu, Ruisha Zhou, Jiangfeng Song. MOF-74 and Its Compound: Diverse Synthesis and Broad Application [J]. Progress in Chemistry, 2021, 33(12): 2283-2307.
[15] Wen Zhou, Xin Zhang, Hongpeng Ma, Jie Xu, Bin Guo, Panxin Li. Chemical and Physical Mechanism and Method of Preparation of Thermoplastic Starch [J]. Progress in Chemistry, 2021, 33(11): 1972-1982.