中文
Announcement
More
Progress in Chemistry 2010, Vol. 22 Issue (10): 1882-1900 Previous Articles   Next Articles

• Review •

Reaction and Mechanism of Low-Temperature Selective Catalytic Reduction of NOx by NH3 over Manganese Oxide-based Catalysts

Sun Liang1,2   Xu Youjia2   Cao Qingqing2   Hu Bingqing2   Wang Chao2   Jing Guohua1* *   

  1. (1. College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; 2. Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China)
  • Received: Revised: Online: Published:
  • Contact: Jing Guohua E-mail:zhoujing@hqu.edu.cn
PDF ( 2797 ) Cited
Export

EndNote

Ris

BibTeX

More attention to manganese oxide-based catalysts has been paid due to their excellent catalytic activities in low-temperature selective catalytic reduction of NOx by NH3 (NH3-SCR) in recent years. The progress of low-temperature NH3-SCR on manganese oxide-based catalysts is reviewed in this paper. The effects of oxidation states, bulk and surface structures of manganese oxides together with the nature of the doping cations and the supports on catalytic activities are extensively analyzed, and according to these results, the general conclusions can be drawn that both higher oxidation state of manganese and higher surface areas favor for the reaction of NH3-SCR at low temperatures, the doping cations such as Ce4+, Cr3+, Fe3+, Cu2+ and Sn4+ can enhance NOx conversion and/or N2 selectivity of manganese oxide-based catalysts in low-temperature NH3-SCR, and the supports with excellent features like TiO2 and silicon-aluminum zeolites can facilitate the improvements of hydrophobic ability and sulfur-resistant performance. Meanwhile, the mechanisms of low-temperature NH3-SCR according to activations of NH3 and NO alone or both are systematically discussed, and depending on the reaction conditions, Eley-Rideal and Langmuir-Hinshelwood mechanisms as well as Mars-van Krevelen one possibly simultaneously occur in low-temperature NH3-SCR reactions over manganese oxide-based catalysts. Finally, the general proposal for developing high active manganese oxide-based catalysts in low-temperature NH3-SCR is put forward.

Contents
1. Introduction
2. Manganese oxide-based catalysts for low-temperature NH3-SCR
2.1 Unsupported manganese oxide-based catalysts
2.2 Supported manganese oxide-based catalysts
3. Mechanisms of low-temperature NH3-SCR on manganese oxide-based catalysts
3.1 Eley-Rideal mechanism
3.2 Langmuir-Hinshelwood mechanism
4. Conclusions and prospect

[1 ] Fritz A,Pitchon V. Appl. Catal. B,1997,13: 1—25
[2 ] 郝吉明(Hao J M) ,马广大(Ma G D) . 大气污染控制工程,
第二版( Air Pollution Control Engineering,2nd ed. ) . 北京:
高等教育出版社( Beijing: Higher Education Press) ,2002. 354
[3 ] 滕加伟( Teng J W) ,宋庆英( Song Q Y) ,于岚(Yu L) ,卢文
奎( Lu W K) ,陈庆龄( Chen Q L) . 环境污染治理技术与设
备( Techniques and Equipment for Environmental Pollution
Control) ,2000,l(1) : 38—45
[4 ] Busca G,Lietti L,Ramis G,Berti F. Appl. Catal. B,1998,
18: 1—36
[5 ] Qi G,Yang R T. Chem. Commun. ,2003,(7) : 848—849
[6 ] Kang M,Kim D J,Park E D,Kim J M,Yie J E,Kim S H,
Hope-Weeks L,Eyring E M. Appl. Catal. B,2006,68: 21—
27
[7 ] Pena D A,Uphade B S,Smirniotis P G. J. Catal. ,2004,221:
421—431
[8 ] Smirniotis P G,Pena D A,Uphade B S. Angew. Chem. Int.
Ed. ,2001,40: 2479—2481
[9 ] Kapteijn F, Singoredjo L,Andreini A,Moulijn J A. Appl.
Catal. B,1994,3: 173—189
[10] Sreekanth P M,Pena D A,Smirniotis P G. Ind. Eng. Chem.
Res. ,2006,45: 6444—6449
[11] Smirniotis P G,Sreekanth P M,Pena D A,Jenkins R G. Ind.
Eng. Chem. Res. ,2006,45: 6436—6443
[12] Thackeray M M. Prog. Solid. State. Ch. ,1997,25: 1—71
[13] Luo J,Zhang Q H,Martinez J G,Suib S L. J. Am. Chem.
Soc. ,2008,130: 3198—3207
[14] Tang X L,Hao J M,Xu W G,Li J H. Catal. Commun. ,2007,
8: 329—334
[15] Kang M,Park E D,Kim J M,Yie J E. Appl. Catal. A,2007,
327: 261—269
[16] Kang M,Yeon T H,Park E D,Yie J E,Kim J M. Catal.
Lett. ,2006,106: 77—80
[17] Park T S,Jeong S K,Hong S H,Hong S C. Ind. Eng. Chem.
Res. ,2001,40: 4491—4495
[18] 张治安( Zhang Z A) ,杨邦朝( Yang B C) ,邓梅根( Deng M
G) ,胡永达(Hu Y D) ,汪斌华(Wang B H) . 化学学报(Acta
Chimica Sinica) ,2004,62(17) : 1617—1620
[19] Imamura S. Ind. Eng. Chem. Res. ,1999,38: 1743—1753
[20] Qi G,Yang R T. J. Phys. Chem. B,2004,108: 15738—
15747
[21] Qi G,Yang R T,Chang R. Appl. Catal. B,2004,51: 93—
106
[22] Qi G,Yang R T. J. Catal. ,2003,217: 434—441
[23] Eigenmann F,Maciejewski M, Baiker A. Appl. Catal. B,
2006,62: 311—318
[24] 唐晓龙( Tang X L) ,郝吉明( Hao J M) ,徐文国( Xu W G) ,
李俊华( Li J H) . 催化学报( Chin. J. Catal. ) ,2006,27
(10) : 843—848
[25] Casapu M,Krocher O,Elsener M. Appl. Catal. B,2009,88:
413—419
[26] Tanabe K. Catal. Today,2003,78: 65—77
[27] Ziolek M. Catal. Today,2003,78: 47—64
[28] Chen Z H,Li X H,Gao X,Jiang Y B,Lu Y X,Wang F R,
Wang L F. Chin. J. Catal. ,2009,30: 4—6
[29] Long R Q,Yang R T,Chang R. Chem. Commun. ,2002,
(5) : 452—453
[30] Kang M,Park E D,Kim J M,Yie J E. Catal. Today,2006,
111: 236—241
[31] Tang X F,Li J H,Wei L S,Hao J M. Chin. J. Catal. ,2008,
29: 531—536
[32] Kijlstra W S,Brands D S,Smit H I,Poels E K,Bliek A. J.
Catal. ,1997,171: 219—230
[33] Valdés-Solis T,Marbán G,Fuertes A B. Catal. Today,2001,
69: 259—264
[34] Sreekanth P M,Smirniotis P G. Catal. Lett. ,2008,122: 37—
42
[35] Jiang B Q,Liu Y,Wu Z B. J. Hazard. Mater. ,2009,162:
1249—1254
[36] Li J H,Chen J J,Ke R,Luo C K,Hao J M. Catal. Commun. ,
2007,8: 1896—1900
[37] Wu Z B,Jiang B Q,Liu Y,Zhao W R,Guan B H. J. Hazard.
Mater. ,2007,145: 488—494
[38] Wu Z B,Jiang B Q,Liu Y,Wang H Q,Jin R B. Environ. Sci.
Technol. ,2007,41: 5812—5817
[39] Duffy B L,Curryhyde H E,Cant N W,Nelson P F. J. Catal. ,
1995,154: 107—114
[40] Curry-Hyde E,Baiker A. Ind. Eng. Chem. Res. ,1990,29:
1985—1989
[41] Bosch H,Janssen F J J G,van den Kerkhof F M G,Oldenziel J,
van Ommen J G,Ross J R H. Appl. Catal. ,1986,25 (1 /2 ) :
239
[42] Stevenson S A,Vartuli J C,Brooks C F. J. Catal. ,2000,190:
228—239
[43] Qi G S,Yang R T. Appl. Catal. B,2003,44: 217—225
[44] Huang H Y,Yang R T. Langmuir,2001,17: 4997—5003
[45] Koebel M, Elsener M,Madia G. Ind. Eng. Chem. Res. ,
2001,40: 52—59
[46] Notoya F,Su C L,Sasaoka E,Nojima S. Ind. Eng. Chem.
Res. ,2001,40: 3732—3739
[47] Wu Z B,Jiang B Q,Liu Y. Appl. Catal. B,2008,79: 347—
355
[48] Komatsu T,Tomokuni K,Yamada I. Catal. Today,2006,116:
244—249
[49] Zhang J F, Huang Y, Chen X. Journal of Natural Gas
Chemistry,2008,17: 273—277
[50] Huang J H,Tong Z Q,Huang Y,Zhang J F. Appl. Catal. B,
2008,78: 309—314
[51] Singoredjo L,Korver R,Kapteijn F,Moulijn J. Appl. Catal.
B,1992,1: 297—316
[52] Kapteijn F,Singoredjo L,Vandriel M,Andreini A,Moulijn J
A,Ramis G,Busca G. J. Catal. ,1994,150: 105—116
[53] Kijlstra W S,Daamen J C M L,van de Graaf J M,van der
Linden B,Poels E K,Bliek A. Appl. Catal. B,1996,7:
337—357
[54] Kijlstra W S,Biervliet M,Poels E K,Bliek A. Appl. Catal. B,
1998,16: 327—337
[55] Armor J N. Catal. Today,1995,26: 147—158
[56] Qi G,Yang R T,Chang R. Catal. Lett. ,2003,87: 67—71
[57] Carja G,Kameshima Y,Okada K,Madhusoodana C D. Appl.
Catal. B,2007,73: 60—64
[58] Marbán G,Antuna R,Fuertes A B. Appl. Catal. B,2003,41:
323—338
[59] Yoshikawa M,Yasutake A,Mochida I. Appl. Catal. A,1998,
173: 239—245
[60] Tang X L,Hao J M,Yi H H,Li J H. Catal. Today,2007,
126: 406—411
[61] Amores J M G,Escribano V S,Ramis G,Busca G. Appl.
Catal. B,1997,13: 45—58
[62] Liang X,Li J H,Lin Q C,Sun K Q. Catal. Commun. ,2007,
8: 1901—1904
[63] Topsoe N Y,Topsoe H,Dumesic J A. J. Catal. ,1995,151:
226—240
[64] Topsoe N Y. Science,1994,265: 1217—1219
[65] 李云涛( Li Y T) ,钟秦( Zhong Q) . 化学进展( Progress in
Chemistry) ,2009,21(6) : 1094—1100
[66] Zhao Q S,Xiang J,Sun L S,Shi J M,Su S,Hu S. J. Cent.
South. Univ. Technol. ,2009,16: 513—519
[67] Kijlstra W S,Brands D S,Poels E K,Bliek A. Catal. Today,
1999,50: 133—140
[68] Kijlstra W S,Brands D S,Poels E K,Bliek A. J. Catal. ,
1997,171: 208—218
[69] Marbán G,Valdés-Solís T,Fuertes A B. J. Catal. ,2004,226:
138—155
[70] Marbán G,Valdés-Solís T,Fuertes A B. Phys. Chem. Chem.
Phys. ,2004,6: 453—464
[71] Eng J,Bartholomew C H. J. Catal. ,1997,171: 14—26
[72] Yamashita T,Vannice A. Appl. Catal. B,1997,13: 141—155
[73] Kantcheva M. J. Catal. ,2001,204: 479—494
[74] Richter M,Trunschke A,Bentrup U,Brzezinka K W,Schreier
E,Schneider M,Pohl M M,Fricke R. J. Catal. ,2002,206:
98—113
[75] Marbán G,Fuertes A B. Catal. Lett. ,2002,84: 13—19
[76] Salker A V,Weisweiler W. Appl. Catal. A,2002,203: 221—
229
[77] Koebel M,Madia G,Raimondi F,Wokaun A. J. Catal. ,2002,
209: 159—165
[78] Luo J,Zhang Q H,Huang A M,Suib S L. Micropor. Mesopor.
Mat. ,2000,35 /36: 209—217
[79] Abecassis-Wolfovich M, Jothiramalingam R, Landau M V,
Herskowitz M,Viswanathan B,Varadarajan T K. Appl. Catal.
B,2005,59: 91—98
[80] Tang X F,Huang X M,Shao J J,Liu J L,Li Y G,Xu Y D,
Shen W J. Chin. J. Catal. ,2006,27: 97—99

[1] Shuai Li, Na Zhu, Yangjian Cheng, Di Chen. Performance of Resistance to Sulfur Oxide and Regeneration over Copper-Based Small-Pore Zeolites Catalysts for the Selective Catalytic Reduction of NOx with NH3 [J]. Progress in Chemistry, 2023, 35(5): 771-779.
[2] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[3] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[4] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[5] Bolin Zhang, Shengyang Zhang, Shengen Zhang. The Use of Rare Earths in Catalysts for Selective Catalytic Reduction of NOx [J]. Progress in Chemistry, 2022, 34(2): 301-318.
[6] Bai Wenji, Shi Yubing, Mu Weihua, Li Jiangping, Yu Jiawei. Computational Study on Cs2CO3-Assisted Palladium-Catalyzed X—H(X=C,O,N, B) Functionalization Reactions [J]. Progress in Chemistry, 2022, 34(10): 2283-2301.
[7] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[8] Lianxin Li, Ranran Cao, Pengyi Zhang. Catalytic Decomposition of Gaseous Ozone at Room Temperature [J]. Progress in Chemistry, 2021, 33(7): 1188-1200.
[9] Changfan Xu, Xin Fang, Jing Zhan, Jiaxi Chen, Feng Liang. Progress for Metal-CO2 Batteries: Mechanism and Advanced Materials [J]. Progress in Chemistry, 2020, 32(6): 836-850.
[10] Xiaohan Wang, Caixia Liu, Chunfeng Song, Degang Ma, Zhenguo Li, Qingling Liu. Application of Metal-Organic Frameworks for Low-Temperature Selective Catalytic Reduction of NO with NH3 [J]. Progress in Chemistry, 2020, 32(12): 1917-1929.
[11] Chenhui Wei, Heyun Fu, Xiaolei Qu, Dongqiang Zhu. Environmental Processes of Dissolved Black Carbon [J]. Progress in Chemistry, 2017, 29(9): 1042-1052.
[12] Ming Ge, Zhenlu Li. All-Solid-State Z-Scheme Photocatalytic Systems Based on Silver-Containing Semiconductor Materials [J]. Progress in Chemistry, 2017, 29(8): 846-858.
[13] Shiying Yang, Yixuan Zhang, Di Zheng, Jia Xin. Surface Reaction Mechanism of ZVAl Applied in Water Environment:A Review [J]. Progress in Chemistry, 2017, 29(8): 879-891.
[14] Xiaojun Shen, Panli Huang, Jialong Wen, Runcang Sun. Research Status of Lignin Oxidative and Reductive Depolymerization [J]. Progress in Chemistry, 2017, 29(1): 162-178.
[15] Yao Zhen, Dai Boen, Yu Yunfei, Cao Kun. Thiol-Epoxy Click Chemistry and Its Applications in Macromolecular Materials [J]. Progress in Chemistry, 2016, 28(7): 1062-1069.