中文
Announcement
More
Progress in Chemistry 2010, Vol. 22 Issue (10): 1869-1881   Next Articles

• Invited Article •

Novel Endohedral Mixed Metal Nitride Clusterfullerenes: Synthesis, Structure and Property

Yang Shangfeng**  Liu Fupin  Chen Chuanbao  Zhang Wenfeng   

  1. (Hefei National Laboratory for Physical Sciences at Microscale,CAS Key Laboratory of Materials for Energy Conversion,Department of Materials Science and Enginerring,University of Science and Technology of China (USTC), Hefei 230026, China)
  • Received: Revised: Online: Published:
  • Contact: Yang Shangfeng E-mail:sfyang@ustc.edu.cn
PDF ( 1990 ) Cited
Export

EndNote

Ris

BibTeX

The family of endohedral fullerenes has been significantly expanded by the discovery of endohedral mixed metal nitride clusterfullerenes (MMNCFs). MMNCF is a special family of endohedral fullerenes which encage a nitride cluster comprising of two to three different metal atoms. In this review, the discovery, syn-thesis and separation methods of MMNCFs together with a brief classification of MMNCFs are first given. Then the structure elucidation methods for MMNCFs reported up to date are introduced, and  the molecular structures of MMNCFs are iscussed in detail. Finally the special electronic, physical and chemical properties of MMNCFs are focused. Furthermore, an outlook for the potential applications of MMNCFs is proposed, given that two to three metal atoms with different physical properties are encaged within MMNCFs, thus formed MMNCFs may achieve the superior property as the combination of their different properties, and hence become a multifunc-tional materials.

Contents

1 Introduction

2 Synthesis of the endohedral mixed metal nitride clusterfullerenes (MMNCFs)

2.1 Trimetallic nitride template process

2.2 Solid nitrogen source

2.3 Reactive gas atmosphere route

2.4 CAPTEAR method

2.5 Other methods

2.6 Classification of MMNCFs

3 Separation of MMNCFs

4 Molecular Structure of the MMNCFs

4.1 Structure determination of the cages

4.2 Structure of the cluster

5 Properties of the MMNCFs

5.1 Electronic absorption property

5.2 Electrochemistry

5.3 Chemical reactions

5.4 Magnetic properties
6 Conclusions and outlook

[1 ] Shinohara H. Rep. Prog. Phys. ,2000,63 (6) : 843—892
[2 ] Akasaka T,Nagase S. Endofullerenes: A New Family of Carbon
Clusters. Dordrecht; Boston: Kluwer Academic Publishers,2002
[3 ] Dunsch L,Yang S F. Small,2007,3 (8) : 1298—1320
[4 ] Dunsch L,Yang S F. Phys. Chem. Chem. Phys. ,2007,9
(24) : 3067—3081
[5 ] Yang S F,Dunsch L. “Endohedral Fullerenes”,Nanomaterials:
Inorganic and Bioinorganic Perspectives ( Eds: Lukehart C M,
Scott R A) . Chichester,United Kingdom: John Wiley & Sons,
2008
[6 ] Dunsch L,Yang S F. Electrochem. Soc. Interface,2006,15
(2) : 34—43
[7 ] Chaur M N,Melin F,Ortiz A L,Echegoyen L. Angew. Chem.
Int. Ed. ,2009,48(41) : 7514—7538
[8 ] 曹保鹏( Cao B P) ,周锡煌( Zhou X H) ,顾镇南( Gu Z N) .
化学通报( Chemistry Online) ,1999,1: 15—20
[9 ] 李小罡( Li X G) ,徐愉( Xu Y) ,刘云圻( Liu Y Q) ,朱道本
( Zhu D B ) . 化学进展( Progress in Chemistry ) ,2000,12
(4) : 385—390
[10] Chai Y,Guo T,Jin C,Haufler R E,Chibante L P F,Fure J,
Wang L,Alford G M,Smalley R E. J. Phys. Chem. ,1991,
95: 7564—7568
[11] Kirbach U,Dunsch L. Angew. Chem. Int. Ed. ,1996,35
(20) : 2380—2383
[12] Stevenson S,Rice G,Glass T,Harich K,Cromer F,Jordan M
R,Craft J,Hadju E,Bible R,Olmstead M M,Maitra K,Fisher
A J,Balch A L,Dorn H C. Nature,1999,401 (6748) : 55—
57
[13] Wang C R,Kai T,Tomiyama T,Yoshida T,Kobayashi Y,
Nishibori E,Takata M,Sakata M,Shinohara H. Angew. Chem.
Int. Ed. ,2001,40 (2) : 397—399
[14] Stevenson S,Mackey M A,Stuart M A,Phillips J P,Easterling
M L,Chancellor C J,Olmstead M M,Balch A L. J. Am.
Chem. Soc. ,2008,130 (36) : 11844—11845
[15] Dunsch L,Yang S,Zhang L,Svitova A,Oswald S,Popov A A.
J. Am. Chem. Soc. ,2010,132(15) : 5413—5421
[16] Krause M, Ziegs F, Popov A A,Dunsch L. Chem. Phys.
Chem. ,2007,8 (4) : 537—540
[17] Iezzi E B,Duchamp J C,Fletcher K R,Glass T E,Dorn H C.
Nano Lett. ,2002,2 (11) : 1187—1190
[18] Wang X L,Zuo T M,Olmstead M M,Duchamp J C,Glass T E,
Cromer F,Balch A L,Dorn H C. J. Am. Chem. Soc. ,2006,
128 (27) : 8884—8889
[19] Stevenson S,Chancellor C J,Lee H M,Olmstead M M,Balch A
L. Inorg. Chem. ,2008,47 (5) : 1420—1427
[20] Stevenson S,Fowler P W,Heine T,Duchamp J C,Rice G,
Glass T,Harich K,Hajdu E,Bible R,Dorn H C. Nature,
2000,408 (6811) : 427—428
[21] Chen N,Zhang E Y,Wang C R. J. Phys. Chem. B,2006,
110 (27) : 13322—13325
[22] Chen N,Fan L Z,Tan K,Wu Y Q,Shu C Y,Lu X,Wang C
R. J. Phys. Chem. C,2007,111 (32) : 11823—11828
[23] Yang S F,Chen C B,Popov A A,Zhang W F,Liu F P,Dunsch
L. Chem. Commun. ,2009,(42) : 6391—6393
[24] Dunsch L,Krause M,Noack J,Georgi P. J. Phys. Chem.
Solids,2004,65 (2 /3) : 309—315
[25] Dunsch L,Georgi P,Ziegs F,Zller H. DE10301722A1,2003
[26] Yang S F,Dunsch L. J. Phys. Chem. B,2005,109 ( 25 ) :
12320—12328
[27] Yang S F,Dunsch L. Chem. Eur. J. ,2006,12: 413—419
[28] Krause M,Wong J,Dunsch L. Chem. Eur. J. ,2005,11 (2) :
706—711
[29] Yang S F,Kalbac M,Popov A,Dunsch L. ChemPhys Chem,
2006,7 (9) : 1990—1995
[30] Yang S F,Troyanov S I,Popov A A,Krause M,Dunsch L. J.
Am. Chem. Soc. ,2006,128 (51) : 16733—16739
[31] Yang S F,Popov A A,Dunsch L. Angew. Chem. Int. Ed. ,
2007,46 (8) : 1256—1259
[32] Yang S F,Popov A,Kalbac M,Duusch L. Chem. Eur. J. ,
2008,14 (7) : 2084—2092
[33] Yang S F,Popov A A,Dunsch L. J. Phys. Chem. B,2007,
111 (49) : 13659—13663
[34] Yang S F,Popov A A,Dunsch L. Chem. Commun. ,2008,
(25) : 2885—2887
[35] Yang S F,Popov A A,Chen C H,Dunsch L. J. Phys. Chem.
C,2009,113 (18) : 7616—7623
[36] Yang S F,Popov A A,Dunsch L. Angew. Chem. Int. Ed. ,
2008,47 (43) : 8196—8200
[37] Zhang L,Popov A,Yang S F,Klod S,Rapta P,Dunsch L.
Phys. Chem. Chem. Phys. ,2010,12: 7840—7847
[38] Stevenson S,Thompson M C,Coumbe H L,Mackey M A,
Coumbe C E,Phillips J P. J. Am. Chem. Soc. ,2007,129
(51) : 16257—16262
[39] Kikuchi K,Akiyama K,Sakaguchi K,Kodama T,Nishikawa H,
Ikemoto I,Ishigaki T,Achiba Y,Sueki K,Nakahara H. Chem.
Phys. Lett. ,2000,319 (5 /6) : 472—476
[40] Sakaguchi K,Fujii R,Kodama T,Nishikawa H,Ikemoto I,
Achiba Y,Kikuchi K. Chem. Lett. ,2007,36 (7) : 832—833
[41] Okimoto H, Kitaura R, Nakamura T, Ito Y, Kitamura Y,
Akachi T,Ogawa D,Imazu N,Kato Y,Asada Y,Sugai T,
Osawa H,Matsushita T,Muro T,Shinohara H. J. Phys. Chem.
C,2008,112 (15) : 6103—6109
[42] Plant S R,Ng T C,Warner J H,Dantelle G,Ardavan A,Briggs
G A D,Porfyrakis K. Chem. Commun. ,2009,(27 ) : 4082—
4084
[43] Elliott B,Yu L,Echegoyen L. J. Am. Chem. Soc. ,2005,127
(31) : 10885—10888
[44] Ge Z,Duchamp J C,Cai T,Gibson H W,Dorn H C. J. Am.
Chem. Soc. ,2005,127 (46) : 16292—16298
[45] Stevenson S,Harich K,Yu H,Stephen R R,Heaps D,Coumbe
C,Phillips J P. J. Am. Chem. Soc. ,2006,128 ( 27 ) :
8829—8835
[46] Stevenson S,Mackey M A,Pickens J E,Stuart M A,Confait B
S,Phillips J P. Inorg. Chem. ,2009,48 (24) : 11685—11690
[47] Olmstead M M,de Bettencourt-Dias A,Duchamp J C,Stevenson
S,Dorn H C,Balch A L. J. Am. Chem. Soc. ,2000,122
(49) : 12220—12226
[48] Stevensen S,Phillips J P,Reid J E,Olmstead M M,Rath S P,
Balch A L. Chem. Commun. ,2004,2814—2815
[49] Krause M,Dunsch L. Chem. Phys. Chem. ,2004,5 ( 9 ) :
1445—1449
[50] Tarabek J,Yang S F,Dunsch L. ChemPhys Chem,2009,10:
1037—1043
[51] 廉永福( Lian Y F) ,袁福龙(Yuan F L) ,郭丽华(Guo L H) ,
刘美玲( Liu M L) . 化学进展( Progress in Chemistry) ,2008,
20(6) : 909—917
[52] Iezzi E B,Duchamp J C,Harich K,Glass T E,Lee H M,
Olmstead M M,Balch A L,Dorn H C. J. Am. Chem. Soc. ,
2002,124(4) : 524—525
[53] Lee H M,Olmstead M M,Iezzi E,Duchamp J C,Dorn H C,
Balch A L. J. Am. Chem. Soc. ,2002,124(14) : 3494—3495
[54] Stevenson S,Stephen R R,Amos T M,Cadorette V R,Reid J
E,Phillips J P. J. Am. Chem. Soc. , 2005, 127 ( 37 ) :
12776—12777
[55] Iiduka Y,Ikenaga A,Sakuraba T,Wakahara T,Maeda Y,
Nakahodo T,Akasaka T,Kako M,Mizorogi N,Nagase S. J.
Am. Chem. Soc. ,2005,127(28) : 9956—9957
[56] Cardona C M, Kitaygorodskiy A, Ortiz A, Herranz M A,
Echegoyen L. J. Org. Chem. ,2005,70(13) : 5092—5097
[57] Cardona C M,Kitaygorodskiy A,Echegoyen L. J. Am. Chem.
Soc. ,2005,127(29) : 10448—10453
[58] Cai T,Ge Z,Iezzi E B,Glass T E,Harich K,Gibson H W,
Dorn H C. Chem. Commun. ,2005,28: 3594—3596
[59] Cai T,Xu L,Anderson M R,Ge Z, Zuo T,Wang X L,
Olmstead M M,Balch A L,Gibson H W,Dorn H C. J. Am.
Chem. Soc. ,2006,128(26) : 8581—8589
[60] Lukoyanova O,Cardona C M,Rivera J,Lugo-Morales L Z,
Chancellor M M,Olmstead M M,Rodriguez-Fortea A,Poblet J
M,Balch A L,Echegoyen L. J. Am. Chem. Soc. ,2007,129
(34) : 10423—10430
[61] Chen N,Zhang E Y,Tan K,Wang C R,Lu X. Org. Lett. ,
2007,9 (10) : 2011—2013
[62] Zhang E Y,Shu C Y,Feng L,Wang C R. J. Phys. Chem. B,
2007,111: 14223—14226
[63] Tiwari A,Dantelle G,Porfyrakis K,Watt A A R,Ardavan A,
Briggs G A D. Chem. Phys. Lett. ,2008,466 ( 4 /6 ) : 155—
158

[1] Yawei Liu, Xiaochun Zhang, Kun Dong, Suojiang Zhang. Research of Condensed Matter Chemistry on Ionic Liquids [J]. Progress in Chemistry, 2022, 34(7): 1509-1523.
[2] Lusha Gao, Jingwen Li, Hui Zong, Qianyu Liu, Fansheng Hu, Jiesheng Chen. Condensed Matter and Chemical Reactions in Hydrothermal Systems [J]. Progress in Chemistry, 2022, 34(7): 1492-1508.
[3] Yafang Sun, Ziping Zhou, Tong Shu, Lisheng Qian, Lei Su, Xueji Zhang. Multicolor Luminescent Gold Nanoclusters: From Structure to Biosensing and Bioimaging [J]. Progress in Chemistry, 2021, 33(2): 179-187.
[4] Ruixuan Qin, Guocheng Deng, Nanfeng Zheng. Assembling Effects of Surface Ligands on Metal Nanomaterials [J]. Progress in Chemistry, 2020, 32(8): 1140-1157.
[5] Rui Wang, Guoan Tai, Zenghui Wu, Wei Shao, Chuang Hou, Jinqian Hao. Theoretical and Experimental Research of Boron Nanostructures [J]. Progress in Chemistry, 2019, 31(12): 1696-1711.
[6] Xiaohong Chen, Yunzhong Wang, Yongming Zhang, Wangzhang Yuan. Clustering-Triggered Emission of Nonconventional Luminophores [J]. Progress in Chemistry, 2019, 31(11): 1560-1575.
[7] Yangrong Yao, Suyuan Xie. Structures and Progress of Carbon Clusters [J]. Progress in Chemistry, 2019, 31(1): 50-62.
[8] Juan Ren, Shen Bian, Yiyun Wang, Xianglei Kong. Magic-Number Cluster of Serine Octamer: Structure and Chiral Characteristics [J]. Progress in Chemistry, 2018, 30(4): 383-397.
[9] Honglei Wang, Wenzhen Lv, Xingxing Tang, Lingfeng Chen, Runfeng Chen, Wei Huang. Two-Dimensional Perovskites and Their Applications on Optoelectronic Devices [J]. Progress in Chemistry, 2017, 29(8): 859-869.
[10] Zhao Yanxia, He Shenggui. Reactivity of Heteronuclear Oxide Clusters with Small Molecules [J]. Progress in Chemistry, 2016, 28(4): 401-414.
[11] Gong Dejun, Gao Guanbin, Zhang Mingxi, Sun Taolei. Chiral Gold Nanoclusters: Synthesis, Properties and Applications [J]. Progress in Chemistry, 2016, 28(2/3): 296-307.
[12] Shen Yanfang, Xu Chang, Huang Min, Wang Haiyan, Cheng Longjiu. Research Advances of Boron Clusters, Borane and Metal-Doped Boron Compounds [J]. Progress in Chemistry, 2016, 28(11): 1601-1614.
[13] Tian Zhimei, Liu Wangdan, Cheng Longjiu. Progress of the Experimental and Theoretical Studies on Aum(SR)n Clusters [J]. Progress in Chemistry, 2015, 27(12): 1743-1753.
[14] Song Chengjie, Wang Erjing, Dong Binghai, Wang Shimin. Non-Fullerene Organic Small Molecule Acceptor Materials [J]. Progress in Chemistry, 2015, 27(12): 1754-1763.
[15] Yan Fei, Liu Xiangyang, Zhao Dongjiao, Bao Weixing, Dong Xiaoping, Xi Fengna*. Application of Fluorescent Gold Nanoclusters for the Determination of Small Molecules [J]. Progress in Chemistry, 2013, 25(05): 799-808.