中文
Announcement
More
Progress in Chemistry 2010, Vol. 22 Issue (09): 1852-1868 Previous Articles   

• Review •

Structures and Mechanism of Action for Complex Ⅲ Inhibiting-Fungicides

Zhang Lu1  Hou Yuxia1  Yuan Huizhu2  Qin Zhaohai1**   

  1. (1. College of Science, China Agricultural University, Beijing 100193, China;2. Institute of Plant Protection, Chinese Academy of Agriculture Science, Beijing 100193, China)
  • Received: Revised: Online: Published:
  • Contact: Qin Zhaohai E-mail:qinzhaohai@263.com
PDF ( 2790 ) Cited
Export

EndNote

Ris

BibTeX

Complex III is an essential component for cellular respiration chain and one of the most important targets of fungicides. In recent years, the application of fungicide which uses Complex III as a target has been more and more extensive. In this paper, the advancement of structure and functin of Complex III was summerized first, and then different action mechanisms of various Complex III inhibiting-fungicides, including Qi site inhibitors Antimycin A, Cyazofamid and Surangin B, Qo site inhibitors strobilurins, Famoxadone, Myxothiazol, Stigmatellin and UHDBT, and double sites inhibitor NQNO were reviewed. A detailed structure-activity relationships discussion about these fungicides was also given.

Contents
1 Introduction
1.1 The structure of complex III
1.2 The function of complex III
2 The complex III-targeted inhibitors
2.1 Qi site inhibitors
2.2 Qo site inhibitors
2.3 Both Qi and Qo sites inhibitor
3 Structure-activity relationship
3.1 Qi site inhibitors
3.2 Qo site inhibitors
4 Conclusions and outlook

CLC Number: 

[1 ] Kim H,Xia D,Yu C A,Xia J Z,Kachurin A M,Zhang L,Yu
L,Deisenhofer J. Proc. Natl. Acad. Sci. USA,1998,95:
8026—8033
[2 ] Yu C A,Xia J Z,Kachurin A M,Yu L,Xia D,Kim H,
Deisenhofer J. Biochimica et Biophysica Acta,1996,1275:
47—53
[3 ] Zhang Z L,Huang L,Shulmeister V M,Chi Y I,Kim K K,
Hung L W,Croftsk A R,Berry E A,Kim S H. Nature,1998,
392: 677—684
[4 ] Iwata S,Lee J W,Okada K,Lee J K,Iwata M,Rasmussen B,
Link T A,Ramaswamy S, Jap B K. Science,1998,281:
64—71
[5 ] Hunte C, Koepke J, Lange C, Romanith T, Michel H.
Structure,2000,8(6) : 669—684
[6 ] Esser L,Quinn B,Li Y F,Zhang M,Elberry M,Yu L,Yu C
A,Xia D. J. Mol. Biol. ,2004,341: 281—302
[7 ] Trumpower B L. Encycl. Biol. Chem. ,2004,1: 528—534
[8 ] Gao X G,Wen X L,Yu C A,Esser L,Tsao S,Quinn B,Zhang
L,Yu L,Xia D. Biochemistry,2002,41: l1692—11702
[9 ] Gao X G,Wen X L,Esser L,Quinn B,Yu L,Yu C A,Xia D.
Biochemistry,2003,42: 9067—9080
[10] Von Jagow G, Engel W D. Febs Letters,1981,136 ( 1 ) :
19—24
[11] Huang L,Cobessi D,Tung E Y,Berry E A. J. Mol. Biol. ,
2005,351: 573—97
[12] Mitani S,Araki S,Takii Y,Ohshima T,Matsuo N,Miyoshi H.
Pest. Biochem. Physio. ,2001,71: 107—115
[13] Trumpower B L. J. Biol. Chem. ,1990,265: 11409
[14] Link T A,Haase U,Brandt U,Von Jagow G. J. Bioenerg
Biomembr. ,1993,25(3) : 221—232
[15] Zheng J,Leong D,Lees G,Nicholson R A. Pest. Biochem.
Physio. ,1998,61: 1—13
[16] Deng Y S,Nicholson R A. Pest. Biochem. Physio. ,2005,81:
39—50
[17] ˇSubík J, Behúň M, Musílek V. Biochem. Biophys. Res.
Commun. ,1974,57(1) : 17—22
[18] Von Jagow G,Gribble G W,Trumpower B L. Biochemistry,
1986,25: 775—780
[19] Thierbach G,Reichenbach H. Biochim. Biophys. Acta,1981,
638: 282—289
[20] Meinhardt S W,Crofts A R. Febs Letters,1982,149 ( 2 ) :
217—222
[21] Rieske J S,Lipton S H,Baum H,Silman H I. J. Biol. Chem. ,
1967,242(21) : 4888—4896
[22] Miyoshi H, Tokutake N, Imaeda Y, Akagi T, Iwamura H.
Biochim. Biophys. Acta,1995,1229: 149—154
[23] Bolgunas S,Clark D A,Hanna,W S,Mauvais P A,Pember S
O. J. Med. Chem. ,2006,49: 4762—4766
[24] Batra P P,Harbin T L,Howes C D,Bernstein S C. J. Biol.
Chem. ,1971,246(23) : 7125—7130
[25] Mitani S. Agrochem. Japan,2001,78: 17—20
[26] Sauter H, Steglich W,Anke T. Angew. Chem. Int. Ed. ,
1999,38,1328—1349
[27] 毛春晖(Mao C H) ,黄路(Huang L) ,黄明智( Huang M Z) .
精细化工中间体( Fine Chem. Intermed. ) ,2001,31 ( 1 ) :
4—8
[28] Jacob F,Neumann S. Syst. Fungic. Antifungal Compd. ,1987,
253: 229—234
[29] Huang W,Zhao P L,Liu C L,Chen Q,Liu Z M,Yang G F. J.
Agric. Food Chem. ,2007,55: 3004—3010
[30] Zhao P L,Liu C L,Huang W,Wang Y Z,Yang G F. J. Agric.
Food Chem. ,2007,55: 5697—5700
[31] 吐松( Tu S) ,徐龙鹤( Xu L H) ,于春睿( Yu C R) ,张弘
( Zhang H) ,李志念( Li Z N) . 有机化学( Chin. J. Org.
Chem. ) ,2007,27(2) : 228—234
[32] Sharma G K,Pathak D. Letters in Drug Design & Discovery,
2010,7(2) ,128—132
[33] 赵培亮( Zhao P L) ,章博( Zhang B) ,王亚洲(Wang Y Z) ,杨
光富(Yang G F) . 有机化学( Chin. J. Org. Chem. ) ,2008,
28(5) : 875—880
[34] Sternberg J A,Geffken D,Adams J B Jr,Postages R,Sternberg
C G,AmpbellC L C,Moberg W K. Pest Manag. Sci. ,2001,
57: 143—152
[35] 胡扬根(Hu Y G) ,丁明武( Ding M W) . 华中师范大学学报
( 自然科学版) ( J. Centr. China Norm. Univ. ( Nat. Sci. ) ) ,
2005,39(4) : 490—494
[36] Yang F D,Yu L,Yu C A. J. Biol. Chem. ,1989,264 ( 2 ) :
891—898
[37] Trumpower B L,Haggerty J G,J. Bioenerg. Biomemb. ,1980,
12(3 /4) : 151—164
[38] Lightbown J W,Jackson F L,Biochem. J. ,1956 63 ( 1 ) :
130—137
[39] 李畅( Li C) . 中国农业大学硕士学位论文(Master Dissertation
of China Agricultural University) ,2009

[1] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[2] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[3] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[4] Bolin Zhang, Shengyang Zhang, Shengen Zhang. The Use of Rare Earths in Catalysts for Selective Catalytic Reduction of NOx [J]. Progress in Chemistry, 2022, 34(2): 301-318.
[5] Bai Wenji, Shi Yubing, Mu Weihua, Li Jiangping, Yu Jiawei. Computational Study on Cs2CO3-Assisted Palladium-Catalyzed X—H(X=C,O,N, B) Functionalization Reactions [J]. Progress in Chemistry, 2022, 34(10): 2283-2301.
[6] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[7] Shiying Yang, Junqin Liu, Qianfeng Li, Yang Li. Modification Mechanism of Zero-Valent Aluminum by Mechanical Ball Milling [J]. Progress in Chemistry, 2021, 33(10): 1741-1755.
[8] Jiangjiexing Wu, Hui Wei. Efficient Design Strategies for Nanozymes [J]. Progress in Chemistry, 2021, 33(1): 42-51.
[9] Changfan Xu, Xin Fang, Jing Zhan, Jiaxi Chen, Feng Liang. Progress for Metal-CO2 Batteries: Mechanism and Advanced Materials [J]. Progress in Chemistry, 2020, 32(6): 836-850.
[10] Yue Liu, Yihan Wu, Hongwei Pang, Xiangxue Wang, Shujun Yu, Xiangke Wang. Study on the Removal of Water Pollutants by Graphite Phase Carbon Nitride Materials [J]. Progress in Chemistry, 2019, 31(6): 831-846.
[11] Xin Yan, Yi-Xian Li, Yue-Mei Jia, Chu-Yi Yu. Glycosylated Iminosugars: Isolation, Synthesis and Biological Activities [J]. Progress in Chemistry, 2019, 31(11): 1472-1508.
[12] Yixian Li, Yuemei Jia, Chuyi Yu. Synthesis and Glycosidase Inhibitory Activities of Fluorinated Iminosugars [J]. Progress in Chemistry, 2018, 30(5): 586-600.
[13] Tianzhi Dai, Dequn Sun. Research of Anti-TB Active Compounds [J]. Progress in Chemistry, 2018, 30(11): 1784-1802.
[14] Chenhui Wei, Heyun Fu, Xiaolei Qu, Dongqiang Zhu. Environmental Processes of Dissolved Black Carbon [J]. Progress in Chemistry, 2017, 29(9): 1042-1052.
[15] Benzhan Zhu, Linna Xie, Chen Shen, Huiying Gao, Liya Zhu, Li Mao. Chemiluminescence Generation from Haloaromatic Pollutants:Structure-Activity Relationship, Molecular Mechanism and Potential Applications [J]. Progress in Chemistry, 2017, 29(9): 930-942.