中文
Announcement
More
Progress in Chemistry 2010, Vol. 22 Issue (09): 1836-1843 Previous Articles   Next Articles

• Review •

Catalytic Decomposition of PCDD/Fs from Flue Gas

Tian Bo   Huang Jun   Deng Shubo   Yang Shuwei   Yu Gang**   

  1. (POPs Research Centre, Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084, China)
  • Received: Revised: Online: Published:
  • Contact: Yu Gang E-mail:yg-den@tsinghua.edu.cn
PDF ( 1620 ) Cited
Export

EndNote

Ris

BibTeX

The catalytic decomposition is one of the effective end-pipe technologies for PCDD/Fs removal from flue gas under mild conditions, which is on the basis of catalytic reduction and oxidation process. So far, the catalysts researched in lab-scale are mainly two categories: noble metal (Pt, Pb, Lr, etc.) and transition metal (V, Cr, W, etc.) oxides. In the field application, the selective catalytic reduction (SCR) with V2O5/W(Mo)O3-TiO2 as the catalyst is the most popular techniques, which can remove PCDD/Fs and NOx simultaneously. This paper reviews the wide scale of the catalytic decomposition of PCDD/Fs by noble metals and transition metal oxides. The destruction principles of PCDD/Fs by these two series of catalysts are introduced. The effects of the reaction conditions on the destruction efficiency are discussed such as catalysts and supports, temperature, H2O vapor, space velocity (SV) and the co-pollutants in the flue gas. Furthermore, the advantages and limitations of the destruction for PCDD/Fs by SCR are evaluated as well as the deactivation and poisoning of catalysts in situ applications. Based on the requirements of industrial application for PCDD/Fs and NOx removal, the research trends of SCR for the future are proposed in order to further improve the destruction efficiency and cost conservation.

Contents
1 Introduction
2 Decomposition of PCDD/Fs by Noble metals
2.1 Reaction Mechanism
2.2 Research progress
3 Decomposition of PCDD/Fs by Metal oxides
3.1 Reaction Mechanism
3.2 Research progress
4 Decomposition of PCDD/Fs by Selective catalytic reduction (SCR)
4.1 Application progress
4.2 Application conditions
4.3 Deactivation and regeneration of SCR catalysts
5 Conclusions and prospects

CLC Number: 

[1 ] Kogevinas M. Human Reprodu. Update. ,2001,7: 331—339
[2 ] Olie K,Vermuelen P,Hutzinger O. Chemosphere,1977,6:
455—459
[3 ] 夏传海(Xia C H) ,徐杰( Xu J) ,吴文忠(Wu W Z) ,梁鑫淼
( Liang X M) . 化学进展( Prog. Chem. ) ,2004,16: 123—130
[4 ] Kinzel J,Gebert W,Gara S. Organohalogen Compd. ,1994,
19: 311—316
[5 ] Everaert K,Baeyens J. Chemosphere,2002,46: 439—448
[6 ] Riggs K,Brown T,Schrock M. Organohalogen Compd. ,1995,
24: 51—54
[7 ] Cleverly D H,Winters D,Ferrario J,Schaum J,Riggs K,Hartford
P,Joseph D. Organohalogen Compd. ,1999,41: 467—470
[8 ] Quass U, Fermann M, Broker G. Directorate General for
Environment (DGENV) ,Essen,2001,ISSN0947—5206
[9 ] 中科院生态环境研究中心( RCEES of CAS) . 中国副产品类
POPs 清单报告(Report of UP POPs Inventory in China) ,2006
[10] Long R Q,Yang R T,Padin J,Takahashi A,Takahashi T. Ind.
Eng. Chem. Res. ,1999,38: 2726—2732
[11] Choi K I,Lee D H. Chemosphere,2007,66 (2) : 370—376
[12] Buckens A,Huang H. J. Hazard. Mater. ,1998,62: 1—33
[13] Takasuga T, Inoue T,Ohi E. Archi. Environ. Contami. &
Toxic. ,2004,46: 419—431
[14] UNEP. Guidelines on Best Available Techniques and Guidance
on Best Environmental Practices Relevant to Article 5 and Annex
C of the Stockholm Convention on Persistent Organic Pollutants.
2006,38—46
[15] Everaet K,Baeyens J. J. Hazard. Mater. ,2004,109: 113—
119
[16] Kim S C,Jeon S H,Jung I R,Kim K H,Kwon M H,Kim J H.
Chemosphere,2001,43: 773—776
[17] Pirkanniemi K,Sillanpaa M. Chemosphere,2002,48: 1047—
1060
[18] Conner W C,Falconer J L. Chem. Rev. ,1995,95: 759—788
[19] Urbano F J,Marinas J M. J. Mol. Catal. A-Chem. ,2001,
173: 329—345
[20] Fueno H, Tanaka K, Sugawa S. Chemosphere, 2002, 48:
771—778
[21] Ukisu Y,Miyadera T. Appl. Catal. B-Environ. ,2003,40:
141—149
[22] Van den Brink R W,Krzan M,Feijen-Jeurissen M M R,Louw
R,Mulder P. Appl. Catal. B: Environ. ,2000,24: 255—264
[23] Ukisu Y,Miyadera T. Chemosphere,2002,46: 507—510
[24] Gardner S D,Hoflund G B,Davidson M R,Schryer D R. J.
Catal. ,1989,115: 132—137
[25] Taylor K,Schlatter J. J. Catal. ,1980,63: 53—71
[26] Okumura M,Akita T,Haruta M,Wang X,Kajikawa O,Okada
O. Appl. Catal. B-General,2003,41: 43—52
[27] De Jong V,Cieplik M K,Reints W A,Fernandez-Reino F,
Louw R. J. Catal. ,2002,211: 355—365
[28] Weber R,Sakurai T,Hanspaul H. Appl. Catal. B-Environ. ,
1999,20: 249—256
[29] Ozkan S,Cai Y P,Kumthekar W. J. Catal. ,1994,149:
375—389
[30] Oyama T. J. Catal. ,1991,128: 210—217
[31] Gilardoni F,Bell A T,Chakraborty A,Boulet P. J. Phys.
Chem. ,2000,104: 12250—12255
[32] Finocchio E,Busca G,Notaro M. Chemosphere,2006,62:
12—20
[33] Poplawske K,Lichtenberger J,Keil F J,Schnitzlein K,Amiridis
M D. Catal. Today,2000,62: 329—336
[34] Lichtenberger J,Amiridis M. J. Catal. ,2004,223: 296—308
[35] Corella J,Toledo J M,Gutierrez M. Progress in Thermochemical
Biomass Conversion,2001,I: 887—895
[36] Hagenmaier H. Katalytische Oxidation Halogenierter
Kohlenwasser-Stoffe unter Besonderer Berucksichtigung des
Dioxinproblems,VDI Berichte 730,1989,239—254
[37] Hagenmaier H, Horch K, Fahlenkamp H, Schetter G.
Chemosphere,1991,23: 1429—1437
[38] Weber R,Sakurai T,Hagenmaier H. Chemosphere,1999,38:
2633—2642
[39] Lomicki S, Lichtenberger J, Xu Z,Waters M, Kosman J,
Amiridis M D. Appl. Catal. B-Environ. ,2003,46: 105—119
[40] Goemans M,Clarysse P,Joannes J,de Clercq D,Lenaerts S,
Matthys K,Boels K. Chemosphere,2004,54: 1357—1365
[41] Bertinchamps F,Gregoire C,Gaigneaux M. Appl. Catal. BEnviron.
,2006,66: 10—22[42] Andreeva D,Ilieva L,Idakiev V,Blin J L,Gigot L,Su B L.
Appl. Catal. A-Gene. ,2003,243: 25—39
[43] Debecker D,Faure C,Meyre M. Small,2008,4: 1806—1812
[44] Ehrich H,Berndt H,Martina M. Appl. Catal. A-Gene. ,2002,
230: 271—280
[45] Jin L,Abraham M. Ind. Eng. Chem. Res. ,1991,30: 89—95
[46] Boos R,Budin R,Hartl H,Stock M,Wurst F. Chemosphere,
1992,25: 375—382
[47] Frings B, Marl K. Katalytische Dioxin-Minderung, Umwelt-
Special,1994,K22—K26
[48] Ide Y, Kashiwabara K, Okada K, Mori S, Hara M.
Chemosphere,1996,32: 189—198
[49] Jones J,Ross J. Catal. Today,1997,35: 97—105
[50] Krishnamoorthy S,Baker J,Amiridis M. Catal. Today,1998,
40: 39—46
[51] Tartler M,Vermeulen M,Winden T. Organohalogen Compd. ,
1996,27: 68—71
[52] Ishida M, Shiji R, Nie P, Nakamura N. Organohalogen
Compd. ,1996,27: 147—152
[53] Busca G,Baldi M,Pistarino C,Gallardo J M,Sanchez E V.
Catalysis Today,1999,53: 525—533
[54] Shin D H, Choi S, Oh J E, Chang Y S. Environ. Sci.
Technol. ,1999,33: 2657—2666
[55] Krishnamoorthy S,Rivas J,Amiridis M. J. Catal. ,2000,193:
264—272
[56] Xu Z T, Fritsky K,Graham J,Dellinger B. Organohalogen
Compd. ,2000,45: 419—422
[57] Liljelind P, Unsworth J, Maaskant O, Marklund S.
Chemosphere,2001,42: 615—623
[58] Cho C H,Ihm S K. Environ. Sci. Technol. ,2002,36: 1600—
1606
[59] Wielgosinski G, Grochowalski A, Machej T, Pajak T,
Cwiakalski W. Chemosphere,2007,67: S150—S154
[60] Delaigle R,Debecker D P,Bertinchamps F,Gaigneaux E M.
Top Catal. ,2009,52: 501—516
[61] Wang H C,Chang S H,Hung P C,Hwang J F,Chang M B. J.
Hazard. Mater. ,2009,164: 1452—1459
[62] Unsworth J, Maaskant O, Andersson P, Marklund S.
Organohalogen Compd. ,1999,40: 435—440
[63] 沈伯雄( Shen B X) ,施建伟( Shi J W) ,杨婷婷(Yang T T) ,史
展亮( Shi Z L) . 化工进展( Chem. Indu. & Engi. Prog. ) ,
2008,27: 64—67
[64] Goemans M,Clarysse P,Joannes J,de Clercq P,Lenaerts S,
Matthys K,Boels K. Chemosphere,2003,50: 489—497
[65] Hartenstein H U. The Handbook of Environmental Chemistry,
2003,Vol. 3,Part O: 389—423
[66] Kim S C,Jeon S H,Jung I R,Kim K H,Kwon M H,Kim J H,
Yi J H,Kim S J. Chemosphere,2001,43: 773—776
[67] Chi K H,Chang M B,Chien G P. Sci. Total Env. ,2005,347:
148—162
[68] Wang L C,Lee W J,Tsai P J,Lee W S,Chang-Chien G P.
Chemosphere,2003,50: 1123—1129
[69] Chang S H,Chi K H,Young C W. Environ. Sci. Technol. ,
2009,43: 7523—7530
[70] Chang M B,Chi K H,Chang S H,Yeh J W. Chemosphere,
2007,66: 1114—1122
[71] Zheng Y J, Jensen A D, Johnsson J E. Appl. Catal. B:
Environ. ,2005,60: 253—264
[72] 张强( Zhang Q) . 燃煤电站SCR 烟气脱硝技术及工程应用
( Coal Fired Power Plants SCR Nitrogen Oxides Control and
Removal) . 北京: 化学工业出版社( Beijing: Chemical
Engineering Press) ,2007. 102—106
[73] Xie G Y,Liu Z Y,Zhu Z P. Appl. Catal. B: Environ. ,2003,
45: 213—221
[74] Raziyeh K,Odenbrand I. Appl. Catal. B: Environ. ,2001,30:
87—99
[75] Raziyeh K,Odenbrand I. Appl. Catal. B: Environ. ,2001,33:
277—291

[1] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[2] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[3] Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705.
[4] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[5] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[6] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[7] Wei Zhang, Kang Xie, Yunhao Tang, Chuan Qin, Shan Cheng, Ying Ma. Application of Transition Metal Based MOF Materials in Selective Catalytic Reduction of Nitrogen Oxides [J]. Progress in Chemistry, 2022, 34(12): 2638-2650.
[8] Yuan Su, Keming Ji, Jiayao Xun, Liang Zhao, Kan Zhang, Ping Liu. Catalysts for Catalytic Oxidation of Formaldehyde and Reaction Mechanism [J]. Progress in Chemistry, 2021, 33(9): 1560-1570.
[9] Lianxin Li, Ranran Cao, Pengyi Zhang. Catalytic Decomposition of Gaseous Ozone at Room Temperature [J]. Progress in Chemistry, 2021, 33(7): 1188-1200.
[10] Xiaoshan Zeng, Chuanjia Shan, Mingdi Sun, Taohong He, Shaopeng Rong. Manganese Dioxides for Catalytic Decomposition of Formaldehyde in Indoor Air [J]. Progress in Chemistry, 2021, 33(12): 2245-2258.
[11] Shicheng Jin, Shuang Yan. Nanostructure Construction and Sensing Mechanism of Metal Oxides for Room Temperature Gas Sensing [J]. Progress in Chemistry, 2021, 33(12): 2348-2361.
[12] Jingchen Tian, Gongde Wu, Yanjun Liu, Jie Wan, Xiaoli Wang, Lin Deng. Application of Supported Non-Noble Metal Catalysts for Formaldehyde Oxidation at Low Temperature [J]. Progress in Chemistry, 2021, 33(11): 2069-2084.
[13] Mengting Xu, Yanqing Wang, Ya Mao, Jingjuan Li, Zhidong Jiang, Xianxia Yuan. Cathode Catalysts for Non-Aqueous Lithium-Air Batteries [J]. Progress in Chemistry, 2021, 33(10): 1679-1692.
[14] Zhi Zhang, Chentao Zou, Shuijin Yang. Fabrication of Semiconductor Composite Materials Based on Bismuth Tungstate/Molybdate and Their Application in Photocatalytic Degradation [J]. Progress in Chemistry, 2020, 32(9): 1427-1436.
[15] Haodeng Chen, Jianxing Xu, Shaomin Ji, Wenjin Ji, Lifeng Cui, Yanping Huo. Application of MOFs Derived Metal Oxides and Composites in Anode Materials of Lithium Ion Batteries [J]. Progress in Chemistry, 2020, 32(2/3): 298-308.